Articles

Increase Lab Efficiency with an Expanded Trace-Level Semivolatiles Method

Exceptionally Inert RMX-5Sil MS Columns Let You Meet Data Quality Objectives for a Wider Range of Compounds

10 Nov 2025

feature EVFA5253

Key Highlights

  • Groundbreaking TriMax deactivation creates a robust and exceptionally inert sample flow path for 150 compounds, including acids, bases, and neutrals.
  • Maximum inertness improves peak shape for a wide range of semivolatiles, allowing method consolidation and picogram-level sensitivity.
  • More flexibility—implement our method for 150 semivolatiles or optimize conditions for your own analyte list in seconds with Restek’s free EZGC chromatogram modeler.
helpful woman on phone

Semivolatiles analysis is a cornerstone application in environmental testing laboratories around the world. Because semivolatiles vary extensively in compound chemistry and reactivity, they are often analyzed on different columns, which means valuable productivity gains can be made if methods can be consolidated onto a single column. However, successful method consolidation hinges on the effectiveness of the GC column deactivation, and traditional deactivations tend to work well for some compound classes but not for others. Restek has developed a next-generation TriMax deactivation technology that is applied to all RMX columns and has been proven to be broadly effective, outperforming even premium competitor columns [1].

A recent study showed that RMX-5Sil MS columns produced more symmetrical peak shapes across a wider range of semivolatile classes, which resulted in more compounds meeting data requirements for linearity and recovery [2]. The current application expands on that foundational work by optimizing analytical conditions and extending the target compound list to 150 commonly analyzed semivolatiles, including internal standards and surrogates (Figure 1). As shown in Figure 2, excellent chromatographic results were obtained at trace levels (0.1-10 pg on-column) for semivolatiles across all compound classes, including reactive acidic (pentachlorophenol, benzoic acid) and basic (pyridine, benzidine) compounds that often have data quality requirements for system suitability. In addition, the RMX-5Sil MS column adequately separated neutral polycyclic aromatic hydrocarbons that are difficult to resolve (benzo[b] and [k]fluoroanthene).

While this consolidated trace-level semivolatiles method demonstrates the effectiveness of an RMX-5Sil MS column across an extensive list of 150 frequently analyzed semivolatiles (cat.# 31907), labs can further adapt it to their needs using free EZGC chromatogram modeling software to instantly create optimized methods for their own specific analyte lists and preferred column dimensions.

Figure 1: Expanded Trace-Level Semivolatiles Method for 150 Semivolatiles, Surrogates, and Internal Standards at 100 ppb (10 pg On-Column)

Semivolatiles on RMX-5Sil MS by GC-MS/MS

GC_EV1527

Peaks

PeakstR (min)Conc.
(ng/mL)
Mass 1Product 1Collision energy 1Mass 2Product 2Collision energy 2
1.1,4-Dioxane2.711058286882814
2.N-Nitrosodimethylamine3.021074446744216
3.Pyridine3.0810795212522618
4.Ethyl methacrylate3.511069416994314
5.2-Picoline3.9110936612936518
6.N-Nitrosomethylethylamine41088716884216
7.Methyl methanesulfonate4.391080658804828
8.Acrylamine4.441071556714422
9.2-Fluorophenol4.6210112926926314
10.N-Nitrosodiethylamine4.94101028561024410
11.Ethyl methanesulfonate5.38101094510109796
12.Benzaldehyde5.881010577101055126
13.Phenol-d66.021099718714216
14.Phenol6.0410946610943930
15.Aniline6.0710936610936520
16.Pentachloroethane6.1410167132141679532
17.bis-(2-Chloroethyl)ether6.181093636632710
18.2-Chlorophenol6.251012864141286324
19.Decane6.4108543671436
20.1,3-Dichlorobenzene6.5110146111141467524
21.1,4-Dichlorobenzene-d46.6110150115141507638
22.1,4-Dichlorobenzene6.6310146111141467524
23.Benzyl alcohol6.851010879121087724
24.1,2-Dichlorobenzene6.8910146111121115036
25.Indene7.051011589161168928
26.2-Methylphenol7.06101088081087724
27.2,2′-oxybis(1-chloropropane)7.1110121456775114
28.N-Nitrosopyrrolidine7.2810100438100556
29.Acetophenone7.311010577121055126
30.3- and 4-Methylphenol7.3310704361077726
31.N-Nitrosomorpholine7.331101168661165610
32.o-Toluidine7.37101067981077726
33.Hexachloroethane7.49102011661220113130
34.Nitrobenzene-d57.57101288212825412
35.Nitrobenzene7.621012377101235130
36.N-Nitrosopiperidine7.8810114846114976
37.Isophorone8.051013882882546
38.2-Nitrophenol8.191013910981398112
39.Benzoic acid8.311012277201057710
40.2,4-Dimethylphenol8.3210122107121227726
41.O,O,O-Triethyl phosphorothioate8.4610121651019811412
42.Bis(2-chloroethoxy)methane8.51063271293636
43.2,4-Dichlorophenol8.6410986381629812
44.Phentermine8.78105842221349120
45.1,2,4-Trichlorobenzene8.8101801451218010924
46.Naphthalene-d88.8910136134141368420
47.Naphthalene8.92101281021612910314
48.α-Terpineol91013612181369310
49.4-Chloroaniline9.0610127100101276520
50.2,6-Dichlorophenol9.071016212681646326
51.Hexachloropropene9.12102131191821511918
52.Hexachlorobutadiene9.21102251901426019026
53.Quinoline9.5610129102161297626
54.Caprolactam9.65101138561135610
55.1,4-Phenylenediamine9.731010881101088020
56.N-Nitrosodibutylamine9.7610116996116748
57.4-Chloro-3-methylphenol10.0510142107121427726
58.Isosafrole I10.1410131103816210412
59.2-Methylnaphthalene10.2710141115161418930
60.1-Methylnaphthalene10.4610141115161418930
61.1,2,4,5-Tetrachlorobenzene10.61102161811421610836
62.Hexachloropentadiene10.62102722371223714322
63.2,3-Dichloroaniline10.831016190161639018
64.2,4,6-Trichlorophenol10.851013297101969724
65.2,4,5-Trichlorophenol10.951013297101969724
66.2-Fluorobiphenyl11.03101721711217217022
67.2-Chloronaphthalene11.1510162127161627730
68.Isosafrole II11.17101311031016210412
69.Safrole11.2101621271613110310
70.Biphenyl11.21101541522215312632
71.1-Chloronaphthalene11.2510162127161277716
72.o-Nitroaniline11.431013892121386522
73.Diphenyl ether11.43101701421014111514
74.1,4-Naphthoquinone11.5710158130815810214
75.1,2-Dinitrobenzene11.861012275121687520
76.1,3-Dinitrobenzene11.87101687520765010
77.Diphenyl phthalate11.871016313381637720
78.1,6-Dinitrotoluene11.951016514881656320
79.1,4-Dinitrobenzene12.0110168511476636
80.Acenaphthylene12.0210152126241527636
81.3-Nitroaniline12.2510926581386520
82.Acenaphthene-d1012.32101641621416416032
83.Acenaphthene12.3710153126361537738
84.2,4-Dinitrophenol12.4610184154618410710
85.4-Nitrophenol12.651013910961398114
86.Pentachlorobenzene12.66102502151625014238
87.Dibenzofuran12.7310168139221396330
88.2,4-Dinitrotoluene12.741016511961656322
89.1-Naphthylamine12.88101431161014311522
90.2,3,5,6-Tetrachlorophenol12.91102321681223413326
91.2,3,4,6-Tetrachlorophenol13102321681223413124
92.2-Naphthylamine13.03101431161014311522
93.Diethyl Phthalate13.31017714981496520
94.Hexadecane13.411085436994114
95.Fluorene13.41101651392616716614
96.Zinophos13.451014379101075220
97.5-Nitro-o-toluidine13.4510152106101527724
98.4-Nitroaniline13.461013810881388018
99.4-Chlorophenyl phenyl ether13.4610204772214111514
100.4,6-Dinitro-2-methylphenol13.5410198168619812110
101.Diphenylamine13.71016966221697730
102.Azobenzene13.761018210561827712
103.2,4,6-Tribromophenol13.88103302222033214334
104.Sulfotepp14.1102021461032214624
105.1,3,5-Trinitrobenzene14.231021316782137438
106.Diallate 114.31108643623415016
107.Phorate14.3210754781214726
108.Phenacetin14.3510179137817910914
109.4-Bromophenyl phenyl ether14.41102481411414111512
110.Diallate 214.48102341501686436
111.Hexachlorobenzene14.5102842491428821626
112.Dimethoate14.610936381254714
113.Atrazine14.821020012282152008
114.Pentachlorophenol14.9102661672227016922
115.4-Aminobiphenyl14.9310168141816816710
116.Pentachloronitrobenzene14.9310295265823714320
117.Propyzamide15.13101731451425419116
118.Phenanthrene-d1015.24101881602018415432
119.Octadecane15.271085436994114
120.Phenanthrene15.29101781521817815132
121.Dinoseb15.34101631161424011724
122.Disulfoton15.361088606976516
123.Anthracene15.39101781521817815132
124.Carbazole15.741101671661216713924
125.Methyl Parathion16.0810263109102637924
126.di-n-Butyl phthalate16.5810149121121496520
127.4-Nitroquinoline-N-oxide16.831019016081017510
128.Ethyl Parathion16.891010981102918126
129.Methapyrilene17.1109753161909714
130.Isodrin17.36102612261626119128
131.Fluoranthene17.65102021762618415618
132.Fluoranthene17.65102021523020017422
133.Benzidine17.99101841661620014934
134.Pyrene18.08102001502621220836
135.p-Terphenyl-d1418.5102442421424424022
136.Aramite 118.5510319185617510714
137.Aramite 218.71018563123191856
138.p-Dimethylaminoazobenzene18.791022514861207716
139.Chlorobenzilate18.93102511391225111130
140.Famfur19.41021810914125796
141.3,3′-Dimethylbenzidine19.4610211196821119516
142.Kepone19.47102722371223714322
143.Benzyl butyl phthalate19.5610206149814912110
144.Bis(2-ethylhexyl) adipate19.81101295514129838
145.2-Acetylaminofluorene19.93102231811018115234
146.Benz[a]anthracene20.5102282022222620028
147.Chrysene-d1220.51102402381424023630
148.3,3′-Dichlorobenzidine20.51102521812225218220
149.4,4′-Methylenebis(2-chloroaniline)20.53102311951626623112
150.Chrysene20.56102282022222820136
151.Bis(2-ethylhexyl) phthalate20.7810167149814912114
152.6-Methylchrysene21.46102422262823921326
153.Di-n-octyl phthalate22.0810149121121499316
154.Benzo[b]fluoranthene22.68102522262225022424
155.7,12-Dimethylbenz[a]anthracene22.69102562411224122614
156.Benzo[k]fluoranthene22.74102522262225022424
157.Benzo[a]pyrene23.41102522262225022426
158.Perylene-d1223.55102642622026426034
159.3-Methylcholanthrene24.32102682531425222622
160.Dibenz(a,h)acridine25.8102792523427825024
161.Dibenz[a,j]acridine25.88102792773027825026
162.Indeno[1,2,3-cd]pyrene26.32101381251227625030
163.Dibenz[a,h]anthracene26.4310139126813911314
164.Benzo[ghi]perylene27.05101381251213812428

Conditions

ColumnRMX-5Sil MS, 30 m, 0.25 mm ID, 0.25 µm (cat.# 17323)
Standard/Sample
SVOC MegaMix 150 kit (cat.# 31907)
Revised SV internal standard mix (cat.# 31886)
Base neutral surrogate mix (4/89 SOW) (cat.# 31024)
Acid surrogate mix (4/89 SOW) (cat.# 31025)
Diluent:Dichloromethane
Conc.:100 ppb
Injection
Inj. Vol.:1 µL split (split ratio 10:1)
Liner:Topaz 4.0 mm ID Precision liner w/wool (cat.# 23267)
Inj. Temp.:280 °C
Split Vent Flow Rate:12 mL/min
Oven
Oven Temp.:40 °C (hold 1 min) to 280 °C at 12 °C/min to 310 °C at 3 °C/min (hold 1 min)
Carrier GasHe, constant flow
Flow Rate:1.2 mL/min @ 40 °C
DetectorSRM/MRM
Source Temp.:330 °C
Transfer Line Temp.:280 °C
Analyzer Type:Triple Quadrupole
Ionization Mode:EI
Collision Gas:Ar
Tune Type:PFTBA
Tune Emission Current:70 μA
InstrumentThermo Scientific TSQ 8000 Triple Quadrupole GC-MS
Sample PreparationStandards were combined and diluted to a concentration of 100 ppb.

Figure 2: Highly inert RMX-5Sil MS columns help you meet data requirements for a wide range of challenging semivolatiles at extremely low levels.

Select Semivolatiles at Low Levels on RMX-5Sil MS by GC-MS/MS

GC_EV1526

Conditions

ColumnRMX-5Sil MS, 30 m, 0.25 mm ID, 0.25 µm (cat.# 17323)
Standard/Sample
SVOC MegaMix 150 kit (cat.# 31907)
Revised SV internal standard mix (cat.# 31886)
Base neutral surrogate mix (4/89 SOW) (cat.# 31024)
Acid surrogate mix (4/89 SOW) (cat.# 31025)
Diluent:Dichloromethane
Conc.:1, 10, 100 ppb
Injection
Inj. Vol.:1 µL split (split ratio 10:1)
Liner:Topaz 4.0 mm ID Precision liner w/wool (cat.# 23267)
Inj. Temp.:280 °C
Split Vent Flow Rate:12 mL/min
Oven
Oven Temp.:40 °C (hold 1 min) to 280 °C at 12 °C/min to 310 °C at 3 °C/min (hold 1 min)
Carrier GasHe, constant flow
Flow Rate:1.2 mL/min @ 40 °C
DetectorSRM/MRM
Source Temp.:330 °C
Transfer Line Temp.:280 °C
Analyzer Type:Triple Quadrupole
Ionization Mode:EI
Collision Gas:Ar
Tune Type:PFTBA
Tune Emission Current:70 μA
InstrumentThermo Scientific TSQ 8000 Triple Quadrupole GC-MS

References

  1. RMX GC columns brochure, GNBR4923-UNV, Restek Corporation, 2026.
  2. E. Pack, J. Hoisington, C. English, R. Dhandapani, and C. Myers, Comprehensive trace-level semivolatiles analysis by GC-MS/MS (EPA Method 8270E), Application note, EVAN4919-US, Restek Corporation, 2025.
EZGC software ad
RMX benefits graphic

Products Mentioned


Insert Topaz, Split Precision, 4.0 mm x 6.3 x 78.5, pour GC Thermo TRACE 1300/1310, 1600/1610 avec injecteur SSL, avec laine de quartz, désactivation Premium, lot de 5
Détecteur électronique de fuites de gaz Restek
Kit de solutions-étalons SVOC MegaMix 150, 1 ml/ampoule ; 6 ampoules/kit
Solution étalon de composés de substitution acides (4/89 SOW), 2000 µg/ml, méthanol, ampoule de 1 ml
Solution étalon de composés de substitution basiques ou neutres (4/89 SOW), 1000 µg/ml, chlorure de méthylène, ampoule de 1 ml
Mélange d’étalons internes de SV révisé, 4000 µg/ml, chlorure de méthylène, ampoule de 1 ml

Authors

  • Erica Pack, PhD

    Erica is an interdisciplinary GC applications and technologies scientist at Restek. She obtained her bachelor's degree in forensic biology from The Pennsylvania State University, and her doctorate from Virginia Tech in plant pathology, physiology, and weed science. Since joining Restek in 2021, she has worked with a wide variety of GC columns, including fused silica, MXT, PLOT, and packed columns as well as accessories, such as liners, valves, and methanizers.

    View all posts
  • Chris English

    Since 2004, Chris has managed a team of chemists in Restek's innovations laboratory who perform new product testing, method development, and applications work. Before taking the reins of our lab, he spent seven years as an environmental chemist and was critical to the development of Restek’s current line of volatile GC columns. Prior to joining Restek, he operated a variety of gas chromatographic detectors conducting method development and sample analysis. Chris holds a BS in environmental science from Saint Michael's College.

    View all posts
  • Ramkumar Dhandapani

    Dr. Ramkumar Dhandapani is a seasoned analytical chemist with over 23 years of experience in the chromatography industry and a Ph.D. in analytical chemistry. During his career, he has specialized in method development, validation, and the troubleshooting of chromatography methods. He has developed numerous regulatory-compliant methods across diverse sectors, including environmental analysis, food quality and safety, pharmaceutical, fuels, and chemical industries. Currently, Dr. Dhandapani is the Director of Product Management at Restek, he is keen on innovation in chromatography and scaling breakthrough innovations to market as commercial products.

    View all posts
  • Colton Myers

    Colton Myers is the R&D manager for sample preparation at Restek Corporation with over 10 years of experience in product development and application innovation, particularly in solid phase microextraction (SPME) and volatile analysis. He has made contributions across various industries, authoring multiple peer-reviewed publications. Starting his career in quality control before transitioning to the GC Innovations team, Colton now leads a team dedicated to advancing sample preparation and collection technologies. He holds a BS in chemistry from Juniata College.

    View all posts
EVFA5253