Blog

The Correct Injection Volume for Split Injections

08 Dec 2023

We often see too much being injected into the hot injector during a classical split injection. 

  • This leads to unreproducible results (fluctuating peak areas), wear and contamination of the injection system. 
  • One possible consequence of this backflash” are ghost peaks which – in the worst cases – appear for a long time in the subsequent chromatograms.
    • When partially unevaporated samples return to the split line, they condense in the filter (which should be replaced regularly during instrument maintenance!). Gradually – depending on the injector, flow and split conditions – the sample components are released and transported back into the injector and onto the column. These are visible as ghost peaks in the chromatogram.

However, with splitless injection larger volumes can be injected. If this problem occurs regardless, the wrong injection conditions have been chosen.

How do you determine the appropriate injection volume for split injections? 

The decisive factor is the volume of the vapor cloud that forms from the injected sample during rapid evaporation. The liner must be able to completely absorb the cloud! 

The maximum injection volume for split injection depends on: 

  1. Internal volume of the liner
    • It should be noted that any constriction or filling reduces the volume available for the vapor cloud. Remember that the liner is already filled with carrier gas. 
  2. Solvent used
    • Different solvents form very different vapor volumes.
    • As a rule of thumb: the more polar the solvent, the larger the vapor cloud during evaporation, headed by water.
  3. Injector temperature and carrier gas pressure 

Here are a few examples of vapor volumes (in μL) of different solvents when evaporating 1μL at 250°C at different carrier gas pressures:

 Expansion Volume in µL at various column head pressures
SolventDensity (g/mL)MW5 psig10 psig15 psig
Heptane0.68100219174145
Hexane0.6686245224186
Toluene0.8792303242201
Ethyl Acetate0.9088328261217
Chloroform1.49119400319266
Methylene Chloride1.3385500399332
Methanol0.7932792629525
Water1.0018177614181179

Incidentally, the vapor cloud can be made smaller by pressure pulse injections.

The internal volume of the liner determines the correct injection volume. 

  • Use Restek’s “Solvent Expansion Calculator” for help. 
  • With our EZGC Method Translator and Flow Calculator we offer you another practical and free-of-charge tool for your method development and optimization.
GNBL4814