Blog

TO-15 + PAMS + TO-11A = China’s HJ759 + PAMS + HJ683 part 2: Deans switching and TO-15/PAMS

09 Jun 2019

In a previous blog Jason Herrington mentioned a dual column MS/FID setup for China’s combined HJ759 + PAMS + HJ683 method. While this could be done with a simple Y splitter, a more elegant solution is to use a microfluidic switch, or Deans switch, to send some compounds to the secondary column and FID while maintaining the bulk of the analysis on the MS.

So how does it work? The Deans switch is composed of a pressure control module (PCM), a solenoid valve, and a 3 port switching plate. The primary column is connected to the switching plate with a short transfer line to the primary detector (MS), and a second column to the secondary detector (FID). The solenoid valve directs auxiliary carrier gas flow to the plate, with one of the outlet ports at higher pressure than the other, as shown in Fig. 1 below. The larger arrow on the MS output end of the Deans switch shows the higher pressure that directs the flow to the FID when the switch is on, and vice versa. A smaller pressure is applied to the other side to ensure that the flow from column 1 doesn’t backflow to the PCM.

blog to 15 pams to 11a chinas hj759 pams hj683 part 2 deans switching and to 15pams 01

Fig. 1 – Deans switch operation, with the flow from column 1 shown in red.

This has several advantages over simply splitting the flow. Since the entire sample isn’t passing through the secondary column it can be chosen without concern over it being robust enough to handle everything in the sample. No worries about trying to elute less volatile compounds off your thick film or plot columns. Also, by not splitting the sample sensitivity is maintained without having to decrease split ratios or increase injection volumes. It is important to note though that the Deans switch does increase carrier gas flow on the restrictor and column 2 due to the extra flow from the switching plate, so your MS may see a slight decrease in sensitivity. The extra flow is either 50% or at least 1mL/min more than column 1, so if your primary column flow is 2mL/min your final flow to the MS will be 3mL/min, so keep in mind the pumping efficiency of your MS.

What does it look like in the end? With no cryogenic cooling we have complete analysis of 112 VOCs in 35 minutes. The Deans switch sends the C2 and C3 hydrocarbons at the beginning of the run to the secondary column and FID for better separation and detection, then switches the rest of the run to the MS.

blog to 15 pams to 11a chinas hj759 pams hj683 part 2 deans switching and to 15pams 02

Fig.2 – FID chromatogram of C2 and C3 hydrocarbons at ~1ng on column.

blog to 15 pams to 11a chinas hj759 pams hj683 part 2 deans switching and to 15pams 03

Fig. 3 – MS chromatogram of PAMS compounds at ~1ng on column.

blog to 15 pams to 11a chinas hj759 pams hj683 part 2 deans switching and to 15pams 04

Fig. 4 –MS chromatogram of PAMS + HJ759 compounds at ~1ng on column.

 PeaksTO-15PAMSTR (min) PeaksTO-15PAMSTR (min)
1Ethane X7.67759Carbon tetrachlorideX 20.927
2Ethylene X8.68603-Methylhexane X21.011
3Propane X10.36361BenzeneXX21.401
4PropyleneXX15.583621,2-DichloroethaneX 21.513
5Acetylene X17.86363IsooctaneXX21.638
6DichlorodifluoromethaneX 6.56764HeptaneXX22.01
71,2-DichlorotetrafluoroethaneX 7.148651,4-DifluorobenzeneXX22.312
8Isobutane X7.20466TrichloroethyleneX 22.841
9ChloromethaneX 7.34867Methylcyclohexane X23.348
10trans-2-Butene X7.761681,2-DichloropropaneX 23.399
11n-ButaneXX7.85969Methyl methacrylateX 23.422
12Vinyl chlorideX 7.868701,4-DioxaneX 23.506
131,3-ButadieneX 8.04571BromodichloromethaneX 23.915
14cis-2-butene X8.193722,3,4-Trimethylpentane X24.128
151-Butene X8.621732-Methylheptane X24.472
16BromomethaneX 9.322743-Methylheptane X24.751
17ChloroethaneX 9.79675cis-1,3-DichloropropeneX 24.755
18Isopentane X10.163764-Methyl-2-2pentanone (MIBK)X 24.988
19Vinyl bromideX 10.58677TolueneXX25.415
20TrichlorofluoromethaneX 10.88878n-Octane X25.555
211-Pentene X11.01379trans-1,3-DichloropropeneX 25.801
22n-PentaneXX11.269801,1,2-TrichloroethaneX 26.186
23EthanolX 11.61781TetrachloroetheneX 26.381
24trans-2-Pentene X11.831822-Hexanone (MBK)X 26.502
25Isoprene X12.2483DibromochloromethaneX 26.893
26cis-2-Pentene X12.296841,2-DibromoethaneX 27.125
27AcroleinX 12.6385Chlorobenzene-d5XX27.84
281,1-DichloroetheneX 13.02586ChlorobenzeneX 27.891
291,1,2-TrichlorotrifluoroethaneX 13.11387EthylbenzeneXX27.994
30AcetoneX 13.19288n-NonaneXX28.11
312,2-Dimethylbutane X13.21589m- & p-XyleneXX28.179
32Isopropyl alcoholX 13.79690o-XyleneXX28.769
33Carbon disulfideX 13.87591StyreneXX28.793
34Allyl chlorideX 14.5392BromoformX 29.127
352,3-Dimethylbutane X15.04693CumeneXX29.285
36Methylene chlorideX 15.06944-BromofluorobenzeneXX29.573
372-Methylpentane X15.176951,1,2,2-TetrachloroethaneX 29.712
38Cyclopentane X15.29296n-Propyl benzeneXX29.87
39Tertiary butanolX 15.469971,2,3-Trimethylbenzene X29.963
40Methyl tert-butyl ether (MTBE)X 16.06898n-Decane X30.01
41trans-1,2-DichloroetheneX 16.09699p-EthyltolueneXX30.024
423-Methylpentane X16.1331002-ChlorotolueneX 30.052
431-Hexene X16.7831011,3,5-TrimethylbenzeneXX30.084
44HexaneXX17.071102m-Ethyltoluene X30.377
451,1-DichloroethaneX 17.5871031,2,4-TrimethylbenzeneXX30.609
46Vinyl acetateX 17.5871041,3-DichlorobenzeneX 31.06
472,4-Dimethylpentane X18.711105o-Ethyltoluene X31.171
48Methylcyclopentane X18.9581061,4-DichlorobenzeneX 31.185
492-Butanone (MEK)X 19.194107Benzyl chlorideX 31.311
50cis-1,2-DichloroetheneX 19.246108m-Diethylbenzene X31.352
51Ethyl acetateX 19.297109p-Diethylbenzene X31.483
52BromochloromethaneXX19.873110n-Undecane, X31.524
53TetrahydrofuranX 19.8961111,2-DichlorobenzeneX 31.673
54ChloroformX 20.128112n-Dodecane X32.853
551,1,1-TrichloroethaneX 20.5511131,2,4-TrichlorobenzeneX 33.745
562-methylhexane X20.57114HexachlorobutadieneX 33.866
57CyclohexaneXX20.723115NaphthaleneX 34.172
582,3-Dimethylpentane X20.797     

 

That covers the PAMS and HJ759 methods, but what about HJ683? Don’t worry, there’s more to come on this application soon.

Author

  • Jason Hoisington

    Jason Hoisington received his bachelor’s degree in general science with a focus on chemistry from the University of Alaska, Fairbanks. He worked for SGS Environmental for seven years in environmental soil and water testing, developing methods for the analysis of volatiles and semivolatile organics to include pesticides and polychlorinated biphenyls (PCBs). In 2012, Jason moved on to lab and application support for Dow Chemical Company, providing advanced analytical troubleshooting and method development. In 2019, Jason joined Restek and has focused on air applications.

    View all posts
GNBL4837