Packed Column Instruction Sheet

Important Notes

- The packing materials used in stock packed columns are conditioned for 16 hrs at 5 °C below the maximum liquid phase operating temperature; however, stock packed columns still require conditioning prior to use following the steps outlined in the Installation Instructions below.
- Custom packed columns require conditioning following the steps outlined in the Installation Instructions below.
- All molecular sieve columns are fully activated and end-capped to prevent moisture diffusion.
- 4. Columns configured for on-column injection have a 2" void at the inlet (unless otherwise noted). A column specified as "packed full" does not contain this void.
- 5. Occasionally, to minimize static charge, a small volume of a proprietary solvent may be used to aid in the packing of the column. This will not affect column performance; however, care should be taken when installing the column for the first time as a small volume of liquid may be expelled from the column.
- For GCs designed for capillary columns, an adaptor or "pigtail" will be needed to install a column. Contact Restek's Technical Service Team or your instrument manufacturer for details.
- Operating temperature limits for most liquid phases available from Restek are listed in Table I.
- 8. Never cut or trim either end of a packed column.

Installation Instructions

- Remove the column end-caps (and silicone ferrule, if present) and connect the column to the injector by using a Restek packed column inlet adaptor, installation kit, or the instrument manufacturer's adaptor.
- Stock columns or preconditioned columns may be immediately connected to the detector following the instructions specified by the detector manufacturer.

Do not connect a custom packed column to the detector unless it has been preconditioned at Restek, or you condition it yourself following the instructions in Step 3.

- 3. Condition the column using the following procedure.
 - a. Slowly turn on the carrier gas and adjust to the desired flow rate. Do not increase at a rate exceeding 10 psi/min or you may compact the packing and plug the column.
 - b. Purge the column at ambient temperature for 10 min to remove any trapped air, then elevate to the operating temperature and hold for 30-60 min (for porous polymers and liquid phase coated supports) or 3 hrs (for molecular sieves). Do not exceed the maximum temperature for the packing (Tables I and II) and do not condition overnight.
 - c. If your column has not been connected to the detector prior to conditioning, it can be connected now by following the installation instructions in Step 2. Your column is now ready to use.

Warning: If using hydrogen as the carrier gas, be sure to safely vent the gas exiting the column.

Helpful Hints

Injector and Detector Temperatures

Be certain the heated zones do not exceed the maximum temperature of the packing. If the column contains multiple packings, the lowest maximum temperature sets the limit for the column. See Table I for a list of temperature limits.

GC Maintenance and Column Removal

Allow the oven to cool. Turn off the carrier gas flow and allow sufficient time for the pressure in the column to reach 0 psig: removing the column or the septum under pressure will expel packing material from the column.

CarboBlack Columns

Avoid rough handling to prevent damage to the CarboBlack B or CarboBlack C packing. Note that these columns can be overloaded easily. Neat samples require on-column injection volumes of less than 0.2 μ L. When injecting diluted samples, do not exceed 70 μ g on-column (each component) for CarboBlack B packing, or 35 μ g on-column for CarboBlack C packing.

Temperature Limits

Never exceed the recommended maximum temperature (Tables I and II).

Molecular Sieve Columns

Occasionally, 5A and 13X molecular sieve columns need to be dried to remove moisture. To dry, we recommend using clean, dry nitrogen. With 25 mL/min nitrogen flowing through the column, set the GC oven temperature to 300 $^{\circ}\text{C}$ and bake the column for 3 hrs.

GC Head Pressure

Please note that the carrier gas head pressure will differ for packed columns, even among those with the same mesh size. This is due to differences in particle shapes and sizes. Irregularly shaped particles will pack more densely than spherical particles. In addition, because mesh size is actually a range of particle sizes and not simply a single size, each column will have a unique pressure drop. Therefore, carrier gas head pressure may need to be adjusted for each packed column, even for columns that contain the same packing.

Peak Shapes

If you experience irregular peak shapes or tailing peaks, verify that the column is not overloaded by injecting less sample or standard.

Leak Checking

Always leak check every connection/fitting and around the injection port using an electronic leak detector.

Table I: Liquid phases available for Restek packed columns. Inquire about others.

Phase	min/max temp. (°C)
Apiezon L	50/300
p,p'-Azoxydiphenetole	132/140
BC-120	0/125
Bentone-34	0/180
bis (2-ethoxyethyl) adipate	0/150
bis (2-ethylhexyl) phthalate	150 max.
bis (2-methoxyethyl) adipate	20/100
Carbowax 1000	40/150
Carbowax 20M	60/225
Carbowax 20M-terephthalic acid	60/225
Carbowax 400	10/100
Carbowax 600	30/125
Cyclohexanedimethanol succinate	100/250
DC-200	0/200
DC-550	20/250
DEGS-PS	20/200
Di(2-ethylhexyl)sebacate	0/125
Diethylene glycol succinate (DEGS)	20/200
Diethylene glycol adipate (DEGA)	0/200
Diisodecyl phthalate	0/175
2,4-Dimethylsulfolane	0/50
Dinonyl phthalate	20/150
Ethylene glycol adipate	100/225
Ethylene glycol phthalate	100/200
Ethylene glycol succinate	100/200
FFAP	50/250
Igepal CO-880 (Nonoxynol)	100/200
Krytox	-30/260
Neopentyl glycol adipate	50/225
Nonoxynol (Igepal CO-880)	100/200
n-Octane on Res-Sil C	150 max.
OPN on Res-Sil C	150 max.
β,β-Oxydipropionitrile	0/75
OV-1, dimethyl (gum)	100/350
OV-1, vinyl	100/350
OV-3, phenyl methyl	0/350

Phase	min/max temp. (°C)
OV-7, phenyl methyl dimethyl, 20% phenyl	0/350
OV-11, phenyl methyl dimethyl, 35% phenyl	0/350
OV-17, phenyl methyl, 50% phenyl	0/375
OV-25, phenyl methyl diphenyl, 75% phenyl	0/350
OV-101, dimethyl (fluid)	0/350
OV-210, trifluoropropyl (fluid)	0/275
OV-225, cyanopropyl methylphenyl methyl	0/265
OV-275, dicyanoallyl	25/250
OV-351	50/270
Phenyldiethanolamine succinate	0/230
Polyphenyl ether (5 rings) OS-124	0/200
Polyphenyl ether (6 rings) OS-138	0/225
Polypropylene glycol	0/150
Rtx-1 (Rt-101)	0/350
Rt-1000	50/250
Rt-1200	25/200
Rt-1500, Rt-1510	50/230
Rt-2100	0/350
Rt-2300	20/275
Rt-2330, Rt-2340	25/275
Rt-Sebaconitrile	25/110
Rt-XLSulfur	250 max.
SE-30, SE-52, SE-54	50/300
Sorbitol	150 max.
Squalane	20/100
Squalene	0/100
Stabilwax	40/240
Tetracyanoethylated pentaerythritol	30/175
THEED (Tetrahydroxyethlenediamine)	0/125
β,β-Thiodipropionitrile (TDPN)	100
Tricresyl phosphate	20/125
1,2,3-Tris (2-cyanoethoxy) propane (TCEP)	0/175
UCON 50-HB-2000	0/200
UCON 50-HB-280-X	0/200
UCON 50-HB-5100	0/200
Versamid 900	190/275

Table II: Packing materials available for Restek packed columns. Inquire about others.

Packing Material	Temp. Limit (°C)
HayeSep A	165
HayeSep B	190
HayeSep C	250
HayeSep D	290
HayeSep DIP	290
HayeSep DB	290
HayeSep N	165
HayeSep P	250
HayeSep Q	275
HayeSep R	250
HayeSep S	250
HayeSep T	165

Packing Material	Temp. Limit (°C)
Porapak P	250
Porapak PS	250
Porapak Q	250
Porapak QS	250
Porapak R	250
Porapak S	250
Porapak N	190
Porapak T	190
Tenax-TA	350
Tenax-GR	350

Questions about this or any other Restek product? Contact us or your local Restek representative (www.restek.com/contact-us).

Restek patents and trademarks are the property of Restek Corporation. (See www.restek.com/Patents-Trademarks for full list.) Other trademarks in Restek literature or on its website are the property of their respective owners. Restek registered trademarks are registered in the U.S. and may also be registered in other countries.

