

# Analyze EPA Method 533 PFAS Reliably with Resprep WAX SPE

By Jason Hoisington

#### **Abstract**

Low-level analysis of per-and polyfluoroalkyl substances (PFAS) requires high sensitivity and low background levels throughout the entire workflow from sample collection, transportation, and storage to analytical instrumentation and sample preparation. Resprey polymeric WAX SPE cartridges allow for accurate low-level quantitation of PFAS compounds in drinking water while meeting the requirements of EPA Method 533.

#### Introduction

Due to the low levels required by many regulatory agencies, the analysis of PFAS in drinking water often employs solid phase extraction (SPE) coupled with LC-MS/MS to reach low detection limits. EPA Method 533 [1] uses weak anion exchange (WAX) SPE to better retain short-chain acid compounds and obtain part-per-trillion (ppt) detection limits. However, due to the ubiquitous nature of PFAS compounds, the selection and screening of all materials and consumables that contact samples, including SPE cartridges, is critical for maintaining a clean background and allowing continued low-level analysis. In this assessment, Resprep WAX cartridges were used with a Resprep QR-12 vacuum manifold to extract samples for EPA Method 533 PFAS analysis using a Shimadzu Nexera LC and 8045 MS/MS.

#### **Experimental**

#### Sample Preparation

Spikes and blanks were prepared in polypropylene bottles using 250 mL deionized water spiked with isotope dilution standards as per EPA Method 533, Section 7.16.1. The 6 mL SPE

#### **Related Products**

- PFAS delay column (cat. # 27854)
- Force C18 1.8 µm, 50 mm x 2.1 mm (cat.# 9634252)
- EPA 533 PFAS calibration standard (cat.# 30736)
- Resprep polymeric WAX SPE cartridges (cat. # 28291)
- Resprep QR-12 vacuum manifold (cat. # 28298-VM)
- Quick replace liners (cat. # 28310-VM)
- Resprep sample delivery system (cat. # 26250)
- Polypropylene vials (cat.# 23246)
- Polyethylene caps (cat.# 23247)
- Chemker vacuum pump (cat.# 27427)

cartridges, which contained 500 mg of 30 µm WAX (cat.# 28291), were placed on a Resprep QR-12 vacuum manifold (cat.# 28298-VM) that was fitted with quick-replace liners (cat.# 28310-VM). Resprep sample delivery system lines (cat.# 26250) were used to transfer the samples to the SPE cartridges. While both the quick-replace liners and sample delivery lines contain PTFE, which can be a potential source of PFAS contamination, investigation of blanks taken using all lines and all ports on the manifold showed no detectable PFAS leaching. Thorough and regular blank checking of all SPE components and solvents, especially when using new lots of materials, is recommended to ensure that background contamination is below acceptable levels.



After preparation of the samples and setup of the SPE system, the samples were extracted following the instructions in EPA Method 533, Section 11.4, which is summarized in Figure 1.

# Figure 1: Sample Preparation Procedure for EPA Method 533 PFAS Analysis

# SPE Cartridge Conditioning

- Rinse with 10 mL of methanol.
- Rinse with 10 mL of aqueous 0.1 M phosphate buffer.
- Add 2 mL of phosphate buffer, then fill remainder of cartridge with reagent water.

# Sample Loading

- · Attach sample lines to cartridges.
- Flow sample through cartridge dropwise at ~5 mL/min.
- Rinse sample bottle with 10 mL of 1 g/L aqueous ammonium acetate and draw through cartridge. Adjust pH to 6.0-8.0 with acetic acid as needed.
- Rinse sample bottle with 1 mL of methanol and draw through cartridge.

# **Drying**

• Draw air or nitrogen through cartridge at high vacuum for 5 minutes.

# Elution

- Place collection tubes under cartridges.
- $\bullet$  Rinse sample bottles with 5 mL of 2% ammonium hydroxide in methanol and draw through cartridge dropwise.
- Repeat with another 5 mL of 2% ammonium hydroxide in methanol.

# Concentration

- Place collection tubes in heated water bath at 55-60 °C.
- Concentrate to dryness under a gentle stream of nitrogen.
- Reconstitute with 1 mL of 80:20 methanol:water.
- Spike extract with isotope performance standards.



## Analytical System

After extraction, the samples were analyzed by LC-MS/MS under the EPA Method 533 PFAS analysis conditions shown below. The use of a PFAS delay column is important to prevent any PFAS contamination upstream of the injector from coeluting with the samples. Thorough blank checking of the analytical system was performed and showed no detectable PFAS contamination.

#### **Instrument Conditions for EPA Method 533 PFAS Analysis**

System: Shimadzu Nexera X2/Shimadzu LCMS-8045

Columns:

- PFAS delay column (cat.# 27854)
- Analytical column: Force C18, 1.8 µm x 50 mm x 2.1 mm (cat.# 9634252)

Injection volume: 3 µL

Mobile phase A: Water, 5 mM ammonium acetate

Mobile phase B: Methanol Flow rate: 0.4 mL/min

Temperature: 40 °C Gradient: Tir

| radient: | Time (min) | %B |
|----------|------------|----|
|          | 0          | 20 |
|          | 6          | 95 |
|          | 6.6        | 95 |
|          | 6.61       | 20 |
|          | 7.5        | 20 |

Ion source: electrospray

Ion mode: ESI-Mode: MRM

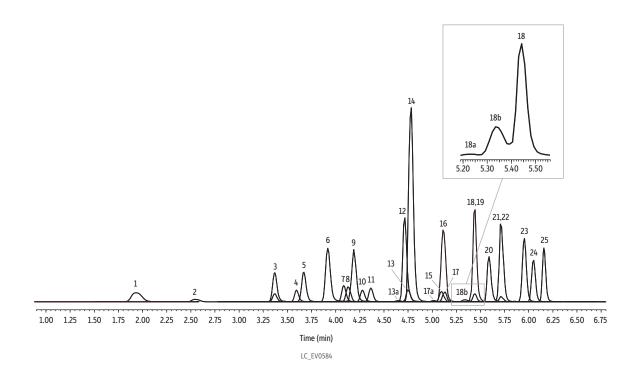
#### Method Detection Limits (MDL)

The method detection limit was calculated from the analysis of seven blank replicates and seven low-level spikes, as outlined in EPA's Definition and Procedure for the Determination of the Method Detection Limit, Revision 2 [2]. The spikes were made at 0.5 ng/L using a 2  $\mu$ g/mL stock solution of native PFAS compounds (EPA 533 PFAS calibration standard, cat.# 30736). The standard deviations of the spike and blank results were multiplied by the Student's t-value of 3.143 to determine the MDL, and the higher of the results between the spikes and blanks was selected as the MDL.

## Accuracy and Precision

Accuracy and precision were determined by analyzing five replicate 10 ng/L spikes. The accuracy of the spikes was calculated and compared to the recovery limits of 70-130% from EPA Method 533. The relative standard deviations of the spike results were also determined.

The recovery of the isotope dilution standards was calculated from the spike replicates and compared to the recovery limits of 50-200% from EPA Method 533 for PFAS analysis.


#### **Results and Discussion**

Good chromatographic results were obtained for all compounds, as shown in Figure 2. The MDL, accuracy, and precision results for native PFAS analytes are shown in Table I. The calculated MDLs were below the reporting limits shown in Table 7 in EPA Method 533, and the accuracy of the 10 ng/mL spikes ranged from 84 to 119% of the spiked value, well within the 70-130% recovery required by the method. The spikes showed good precision as well, with the results being  $\leq$ 20% RSD.

Similarly, the recoveries for the isotope dilution standards were also within 20% of the true value and had precision ≤20% RSD. The results are shown in Table II.



Figure 2: Analysis of 25 ng/mL Standard for EPA Method 533



|                                                                   | tr    | Conc.   | Precursor | Product | Column                   |                      | at.# 9634252)         |          |          |
|-------------------------------------------------------------------|-------|---------|-----------|---------|--------------------------|----------------------|-----------------------|----------|----------|
| Peaks                                                             | (min) | (ng/mL) | Ion       | lon     | Dimensions:              | 50 mm x 2.1 i        | mm ID                 |          |          |
| <ol> <li>Perfluoro-n-butanoic acid (PFBA)</li> </ol>              | 1.933 | 25      | 213       | 169     | Particle Size:           | 1.8 µm               |                       |          |          |
| <ol><li>Perfluoro-3-methoxypropanoic acid (PFMPA)</li></ol>       | 2.544 | 25      | 229       | 85      | Pore Size:               | 100 Å                |                       |          |          |
| <ol><li>Perfluoro-n-pentanoic acid (PFPeA)</li></ol>              | 3.369 | 25      | 263       | 219     | Temp.:                   | 40 °C                | S 191 - 19 - 1 - 1    | 17       | 20726\   |
| 4. Perfluorobutanesulfonic acid (PFBS)                            | 3.594 | 25      | 299       | 80      | Standard/Sample          |                      | S calibration standar | d (cat.# | 30136)   |
| <ol><li>Perfluoro-4-methoxybutanoic acid (PFMBA)</li></ol>        | 3.669 | 25      | 279       | 85      | Diluent:<br>Conc.:       | 80:20 Metha          | not:water             |          |          |
| <ol><li>Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)</li></ol> | 3.919 | 25      | 315       | 135     | Inj. Vol.:               | 25 ng/mL<br>3 μL     |                       |          |          |
| 7. Perfluoro-3,6-dioxaheptanoic acid (NFDHA)                      | 4.084 | 25      | 295       | 201     | Mobile Phase             | JμL                  |                       |          |          |
| 8. 1H,1H,2H,2H-Perfluorohexane sulfonic acid (4:2 FTS)            | 4.129 | 25      | 327       | 307     | A:                       | Water 5 mM           | ammonium acetate      |          |          |
| Perfluorohexanoic acid (PFHxA)                                    | 4.189 | 25      | 313       | 269     | B:                       | Methanol             | annoman acctate       |          |          |
| 10. Perfluoro-1-pentanesulfonic acid (PFPeS)                      | 4.278 | 25      | 349       | 80      |                          |                      |                       |          |          |
| 11. Perfluoro(2-methyl-3-oxahexanoic) acid (HFPO-DA)              | 4.365 | 25      | 285       | 169     |                          | Time (min)           | Flow (mL/min)         | %A       | %B       |
| 12. Perfluoroheptanoic acid (PFHpA)                               | 4.715 | 25      | 363       | 319     |                          | 0.00                 | 0.4                   | 80       | 20       |
| <ol><li>Perfluoro-1-hexanesulfonic acid (PFHxS)</li></ol>         | 4.750 | 25      | 399       | 80      |                          | 6.00                 | 0.4                   | 5        | 95<br>95 |
| 14. 4,8-dioxa-3H-perfluorononanoic acid (ADONA)                   | 4.78  | 25      | 277       | 251     |                          | 6.60                 | 0.4                   | 5        |          |
| 15. 1H,1H,2H,2H-Perfluorooctane sulfonic acid (6:2 FTS)           | 5.096 | 25      | 427       | 407     |                          | 6.61                 | 0.4                   | 80       | 20       |
| 16. Perfluoro-1-heptanesulfonic acid (PFHpS)                      | 5.132 | 25      | 449       | 80      |                          | 7.50                 | 0.4                   | 80       | 20       |
| 17. Perfluorooctanoic acid (PFOA)                                 | 5.115 | 25      | 413       | 369     | 5.1.1.                   | cl. 1 00             |                       |          |          |
| 18. Perfluorooctanesulfonic acid (PFOS)                           | 5.441 | 25      | 499       | 80      | Detector                 | Shimadzu 80          | 45                    |          |          |
| 19. Perfluorononanoic acid (PFNA)                                 | 5.439 | 25      | 463       | 419     | Ion Source:<br>Ion Mode: | Electrospray<br>ESI- |                       |          |          |
| 20. 9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid            |       |         |           |         | Mode:                    | MRM                  |                       |          |          |
| (9Cl-PF3ONS)                                                      | 5.588 | 25      | 531       | 351     | Instrument               | Shimadzu Ne          | vera X2               |          |          |
| 21. 1H,1H,2H,2H-Perfluorodecane sulfonic acid (8:2 FTS)           | 5.712 | 25      | 527       | 507     | Notes                    |                      | mers for PFOA, PFO    | S and Pl | HxS      |
| 22. Perfluorodecanoic acid (PFDA)                                 | 5.712 | 25      | 513       | 469     | Notes                    |                      | ak number "a" and '   |          | IIAS     |
| 23. Perfluoroundecanoic acid (PFUnA)                              | 5.954 | 25      | 563       | 519     |                          |                      | olumn used (cat.# 2   |          |          |
| 24. 11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid           |       |         |           |         |                          |                      |                       | /-       |          |
| (11Cl-PF3OUdS)                                                    | 6.049 | 25      | 631       | 451     |                          |                      |                       |          |          |
| 25. Perfluorododecanoic acid (PFDoA)                              | 6.158 | 25      | 613       | 569     |                          |                      |                       |          |          |



**Table I:** Results from MDL, Precision, and Accuracy Experiments for Native PFAS

| Compound                                            | Abbreviation | MDL (ng/L) | Accuracy (%) | %RSD |
|-----------------------------------------------------|--------------|------------|--------------|------|
| Perfluorobutanoic acid                              | PFBA         | 8.5        | 95           | 20   |
| Perfluoro-3-methoxypropanoic acid                   | PFMPA        | 0.2        | 119          | 20   |
| Perfluoropentanoic acid                             | PFPeA        | 0.2        | 114          | 10   |
| Perfluorobutane sulfonate                           | PFBS         | 0.3        | 94           | 14   |
| Perfluoro-4-methoxybutanoic acid                    | PFMBA        | 1.1        | 88           | 8    |
| Perfluoro(2-ethoxyethane)sulfonic acid              | PFEESA       | 0.2        | 84           | 12   |
| Nonafluoro-3,6-dioxaheptanoic acid                  | NFDHA        | 0.2        | 103          | 15   |
| 1H, 1H, 2H,2H-perfluorohexane sulfonate             | 4:2 FTS      | 0.3        | 97           | 19   |
| Perfluorohexanoic acid                              | PFHxA        | 0.1        | 98           | 11   |
| Perfluoropentane sulfonate                          | PFPeS        | 0.2        | 96           | 13   |
| Hexafluoropropylene oxide dimer acid                | HFPO-DA      | 1.0        | 89           | 13   |
| Perfluoroheptanoic acid                             | PFHpA        | 0.4        | 101          | 17   |
| Perfluorohexane sulfonate                           | PFHxS        | 0.3        | 110          | 15   |
| 4,8-Dioxa-3H-perfluorononanoic acid                 | ADONA        | 1.1        | 100          | 7    |
| 1H, 1H, 2H,2H-perfluorooctane sulfonate             | 6:2 FTS      | 0.7        | 105          | 8    |
| Perfluoroheptane sulfonate                          | PFHpS        | 0.5        | 101          | 12   |
| Perfluorooctanoic acid                              | PFOA         | 0.2        | 112          | 9    |
| Perfluorooctane sulfonate                           | PFOS         | 0.3        | 109          | 5    |
| Perfluorononanoic acid                              | PFNA         | 0.5        | 101          | 10   |
| 9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid  | 9Cl-PF3ONS   | 0.2        | 93           | 7    |
| Perfluorodecanoic acid                              | PFDA         | 0.4        | 111          | 6    |
| 1H, 1H, 2H,2H-perfluorodecane sulfonate             | 8:2 FTS      | 0.6        | 109          | 5    |
| Perfluoroundecanoic acid                            | PFUnA        | 0.8        | 110          | 6    |
| 11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid | 11Cl-PF3OUdS | 0.3        | 95           | 11   |
| Perfluorododecanoic acid                            | PFDoA        | 1.1        | 94           | 7    |



Table II: Results from Precision and Accuracy Experiments for Isotope Dilution Standards.

| Compound                                                                                             | Abbreviation                          | Accuracy (%) | %RSD |
|------------------------------------------------------------------------------------------------------|---------------------------------------|--------------|------|
| Perfluoro-n-[1,2,3,4-13C4]butanoic acid                                                              | <sup>13</sup> C <sub>4</sub> -PFBA    | 111          | 13   |
| Perfluoro- <i>n</i> -[1,2,3,4,5- <sup>13</sup> C <sub>5</sub> ]pentanoic acid                        | <sup>13</sup> C <sub>5</sub> -PFPeA   | 118          | 14   |
| Sodium perfluoro-1-[2,3,4-13C3]butanesulfonate                                                       | <sup>13</sup> C <sub>3</sub> -PFBS    | 108          | 16   |
| Sodium 1H,1H,2H,2H-perfluoro-1-[1,2-13C2]hexane sulfonate                                            | <sup>13</sup> C <sub>2</sub> -4:2FTS  | 97           | 12   |
| Perfluoro- <i>n</i> -[1,2,3,4,6- ¹³C₅]hexanoic acid                                                  | <sup>13</sup> C <sub>5</sub> -PFHxA   | 115          | 14   |
| 2,3,3,3-Tetrafluoro-2-(1,1,2,2,3,3,3-heptafluoropropoxy <sup>13</sup> C <sub>3</sub> -propanoic acid | <sup>13</sup> C <sub>3</sub> -HFPO-DA | 89           | 14   |
| Perfluoro- <i>n</i> -[1,2,3,4-1 <sup>3</sup> C <sub>4</sub> ]heptanoic acid                          | <sup>13</sup> C <sub>4</sub> -PFHpA   | 110          | 14   |
| Sodium perfluoro-1-[1,2,3-13C3]hexanesulfonate                                                       | ¹³C₃-PFHxS                            | 114          | 14   |
| Sodium 1H,1H,2H,2H-perfluoro-1-[1,2-13C2]-octane sulfonate                                           | <sup>13</sup> C <sub>2</sub> -6:2FTS  | 92           | 7    |
| Perfluoro-n-[13C8]octanoic acid                                                                      | <sup>13</sup> C <sub>8</sub> -PFOA    | 113          | 14   |
| Sodium perfluoro-[13C8]octanesulfonate                                                               | <sup>13</sup> C <sub>8</sub> -PFOS    | 102          | 7    |
| Perfluoro-n-[13C9]nonanoic acid                                                                      | <sup>13</sup> C <sub>9</sub> -PFNA    | 101          | 9    |
| Perfluoro- <i>n</i> -[1,2,3,4,5,6-13C <sub>6</sub> ]decanoic acid                                    | <sup>13</sup> C <sub>6</sub> -PFDA    | 111          | 12   |
| Sodium 1H,1H,2H,2H-perfluoro-1-[1,2-13C2]-decane sulfonate                                           | <sup>13</sup> C <sub>2</sub> -8:2FTS  | 118          | 14   |
| Perfluoro-n-[1,2,3,4,5,6,7-13C <sub>7</sub> ]undecanoic acid                                         | <sup>13</sup> C <sub>7</sub> -PFUnA   | 114          | 13   |
| Perfluoro-n-[1,2-13C <sub>2</sub> ]dodecanoic acid                                                   | <sup>13</sup> C <sub>2</sub> -PFDoA   | 112          | 13   |

#### **Conclusions**

EPA Method 533 PFAS analysis in drinking water can be challenging with low-level analysis complicated by background contamination. Resprep WAX cartridges have been shown to provide performance that meets or exceeds the requirements of EPA Method 533, allowing for analysis of PFAS at ng/L levels and lower. Visit www.restek.com/PFAS for additional products, methods, and technical resources.

#### References

1. U.S. Environmental Protection Agency, Method 533, Determination of per-and polyfluoroalkyl substances in drinking water by isotope dilution anion exchange solid phase extraction and liquid chromatography/tandem mass spectrometry, November 2019. https://www.epa.gov/sites/default/files/2019-12/documents/method-533-815b19020.pdf
2. U.S. Environmental Protection Agency, Definition and procedure for the determination of the method detection limit, revision 2, December 2016. https://www.epa.gov/sites/default/files/2016-12/documents/mdl-procedure\_rev2\_12-13-2016.pdf



### **PFAS Delay Column**

- Traps system-related PFAS, preventing interference and ensuring accurate trace-level analysis of PFAS in samples.
- Universal compatibility: works with
  - any HPLC or UHPLC up to 15,000 psi (1034 bar);
  - both FPP and SPP analytical columns; and
  - all stationary phases.
- Highly retentive of system-related PFAS; no breakthrough even with extended equilibration times.
- · Easy installation with standard fittings.

| Catalog No. | Product Name                                     | Units |
|-------------|--------------------------------------------------|-------|
| 27854       | PFAS Delay Column, 5 µm, 50 x 2.1 mm HPLC Column | ea.   |



#### Force C18

- A traditional end-capped C18 ideal for general-purpose use in reversed-phase chromatography.
- Wide pH range (2-8) provides excellent data quality for many applications, matrices, and compounds.
- High carbon load (20%) offers high hydrophobic retention.

| Catalog No. | Product Name                             | Units |
|-------------|------------------------------------------|-------|
| 9634252     | Force C18, 1.8 μm, 50 x 2.1 mm LC Column | ea.   |



#### **EPA 533 PFAS Calibration Standard**

#### Contains:

11-chloroeicosafluoro-3-oxaundecane-1sulfonic acid (11Cl-PF3OUdS) (763051-92-9)

1H,1H,2H,2H-Perfluorodecane sulfonic acid (8:2 FTS) (39108-34-4)

1H,1H,2H,2H-Perfluorohexane sulfonic acid (4:2 FTS) (757124-72-4)

1H,1H,2H,2H-Perfluorooctane sulfonic acid (6:2 FTS) (27619-97-2)

4,8-dioxa-3H-perfluorononanoic acid (ADONA) (919005-14-4)

9-chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9Cl-PF3ONS) (756426-58-1)

2-(Heptafluoropropoxy)2,3,3,3tetrafluoropropionic acid (HFPO-DA) (13252-13-6)

Perfluoro-3,6-dioxaheptanoic acid (NFDHA) (151772-58-6)

Perfluoro (2-ethoxyethane) sulfonic acid (PFEESA) (113507-82-7)

Perfluoro-5-oxahexanoic acid (PFMPA) (377-73-1)

Perfluoro-4-methoxybutanoic acid (PFMBA) (863090-89-5)

Perfluorobutanesulfonic acid (PFBS) (375-73-5)

Perfluorobutanoic acid (PFBA) (375-22-4)

Perfluorodecanoic acid (PFDA) (335-76-2)

Perfluorododecanoic acid (PFDOA) (307-55-1)

Perfluoroheptanesulfonic acid (PFHpS) (375-92-8)

Perfluoroheptanoic acid (PFHpA) (375-85-9)

Perfluorohexanesulfonic acid (PFHxS)\* (355-46-4)

Perfluorohexanoic acid (PFHxA) (307-24-4)

Perfluorononanoic acid (PFNA) (375-95-1)

Heptadecafluorooctanesulfonic acid (PFOS)\* (1763-23-1)

Perfluorooctanoic acid (PFOA)\* (335-67-1)

Perfluoropentanesulfonic acid (2706-91-4)

Perfluoropentanoic acid (PFPeA) (2706-90-3) Perfluoroundecanoic acid (PFUnA) (2058-94-8)

| *Technical grade compoun | d containing both | branched and linear | r isomers: see c | ertificate for details. |
|--------------------------|-------------------|---------------------|------------------|-------------------------|
|                          |                   |                     |                  |                         |

| Catalog No. | Concentration | Solvent             | Volume     | Units |
|-------------|---------------|---------------------|------------|-------|
| 30736       | 2 μg/mL       | Methanol (1 mM KOH) | 1 mL/ampul | ea.   |

# **Resprep Polymeric SPE Cartridge, WAX**

- Silica-free, bonded polymeric material—no unwanted secondary silica interactions, even with basic compounds.
- High surface area—higher loading capacity compared to silica-based sorbents.
- Stable over a wide pH range (0–14)—won't hydrolyze under extreme conditions.
- Water-wettable—streamlined conditioning and equilibration steps drastically reduce solvent usage and sample prep time.
- No flow-rate dependence—maintains retention and capacity after conditioning, even if dried out from vacuum or positive pressure flows.
- Choose cartridges for high loading capacity; 96-well plates for high throughput and automation.

| Catalog No. | Product Name                                             | Units  |
|-------------|----------------------------------------------------------|--------|
| 28291       | Resprep Polymeric SPE Cartridge, WAX, 6 mL/500 mg, 30 µm | 30-pk. |



















# **Resprep QR-12 Vacuum Manifold**

| Catalog No. | Product Name                                                                                                                                                                                                                                                                                                   | Units |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 28298-VM    | Resprep QR-12 Vacuum Manifold, includes cover with flow control valves & gasket (cat.# 28316-VM); collection rack (cat.# 28318-VM); plate for 16 mm test tubes (cat.# 28319-VM); 100-pk. Quick Replace liners, PTFE (cat.# 28310-VM); 12-pk. liner guide (cat.# 28312-VM); 12-pk. test tubes (cat.# 28315-VM). | kit   |

# **Quick Replace Liners**

| Catalog No. | Product Name                                                | Units   |
|-------------|-------------------------------------------------------------|---------|
| 28310-VM    | Quick Replace Liners, PTFE, for Resprep QR Vacuum Manifolds | 100-pk. |

# **Resprep Sample Delivery System**

- Compatible with Resprep 1, 3, 6, and 15 mL SPE cartridges.
- Six PTFE transfer lines ( $\frac{1}{8}$ " OD x  $\frac{1}{16}$ " ID x 36" long); each is banded with a different color for easy sample identification.
- Specified in EPA drinking water methods.
- Tested to pH of 1 to ensure no contaminants leach from system.

| Catalog No. | Product Name                   | Units |
|-------------|--------------------------------|-------|
| 26250       | Resprep Sample Delivery System | 6-pk. |

# **Polypropylene Vials**

| Catalog No. | Product Name                                                                   | Units    |
|-------------|--------------------------------------------------------------------------------|----------|
| 23246       | Limited-Volume Screw-Thread Polypropylene Vials, 9 mm, 700 $\mu$ L, 12 x 32 mm | 1000-pk. |

# **Polyethylene Caps**

| Catalog No. | Product Name                                                                         | Units    |
|-------------|--------------------------------------------------------------------------------------|----------|
| 23247       | 2.0 mL, 9 mm Solid-Top Polyethylene Caps, Screw-Thread, 10 mil thick membrane, Clear | 1000-pk. |

# **Chemker Vacuum Pump**

| Catalog No. | Product Name                                           | Units |
|-------------|--------------------------------------------------------|-------|
| 27427       | Chemker 300 PTFE Vacuum Pump, 18 L/min, AC220 V, 50 Hz | ea.   |



# Questions? Contact us or your local Restek representative (www.restek.com/contact-us).

Restek patents and trademarks are the property of Restek Corporation. (See www.restek.com/Patents-Trademarks for full list.) Other trademarks in Restek literature or on its website are the property of their respective owners. Restek registered trademarks are registered in the U.S. and may also be registered in other countries. To unsubscribe from future Restek communications or to update your preferences, visit www.restek.com/subscribe To update your status with an authorized Restek distributor or instrument channel partner, please contact them directly.

@ 2024 Restek Corporation. All rights reserved. Printed in the U.S.A.

