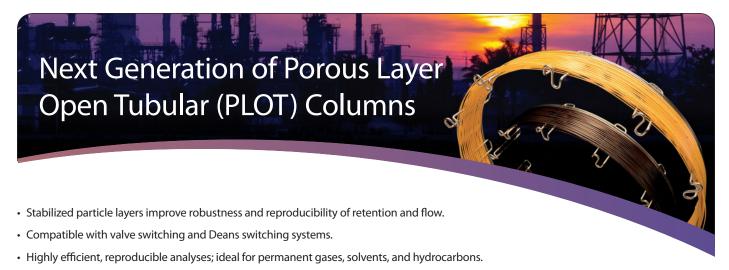


Restek's PLOT Column Family —

The Benchmark for Performance!


- Innovative bonding process minimizes particle release.
- More consistent flow means stable retention times.
- Outstanding peak symmetry improves impurity analysis.

Visit us at www.restek.com/petro

Pure Chromatography

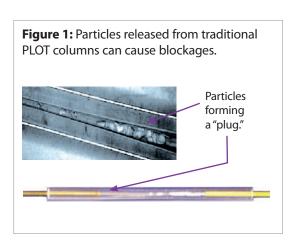
www.restek.com

- Innovative manufacturing procedure reduces particle generation and improves performance of PLOT columns.
- Wound on a 7"-diameter, 11-pin cage unless otherwise noted.

Model your PLOT column using our Pro EZGC Chromatogram Modeler

Porous layer open tubular (PLOT) columns are very beneficial for solving application problems, especially for the analysis of volatile compounds. PLOT columns have a unique selectivity, allowing for the separation of volatile compounds at ambient temperature. Due to the adsorption mechanism of the stationary phases used in PLOT columns, permanent gases and light hydrocarbons can be resolved at ambient temperature; columns can then be programmed to higher temperatures to elute higher boiling compounds.

Traditional PLOT Columns Offer Poor Stability

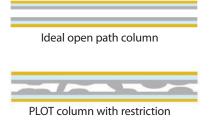

The traditional PLOT column is built with a 5–50 µm layer of particles adhered to the tubing walls. Because this layer of particles generally lacks stability, PLOT columns must be used very carefully as particle release is common and can cause unpredictable changes in retention time and flow behavior. Traditional PLOT columns also must generally be used in conjunction with particle traps to prevent the contamination of valves, injectors, and GC detectors. Detectors contaminated with particles typically generate electronic noise, which shows up chromatographically as a spike in the baseline. In extreme cases, detector flow can be obstructed by particle buildup. Particles can also affect valves by becoming lodged in the valve and causing leaks or restricting flow. Figure 1 shows an example of blockage caused by particle accumulation inside a Press-Tight connector.

Restek PLOT Columns Offer Improved Stability to Minimize Particle Release

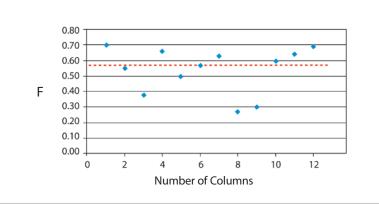
Restek has developed technology and procedures to manufacture PLOT columns with concentric stabilized adsorption layers. These next-generation PLOT columns show a constant flow behavior (permeability) and have significantly improved mechanical stability, resulting in easier operation, better chromatography, and reduced particle release. Greater particle stability means more reproducible retention times, virtually no spiking, and longer column lifetimes.* This innovative Restek stabilization chemistry is currently applied to all fused silica and metal PLOT columns featured here.

 ${}^\star A$ particle trap is still recommended to protect valves and detectors.

PLOT Columns Available In: Fused Silica Rt Column Phases: Rt-Alumina BOND/MAPD Rt-Alumina BOND/Na₂SO₄ Rt-Alumina BOND/KCI Rt-Alumina BOND/CFC Rt-MSieve 5A Rt-Q-BOND Rt-QS-BOND Rt-S-BOND Rt-U-BOND


Consistent Flow Restriction Factor (F) Guarantees Reproducible Flow

Thick layers of particles are difficult to deposit in a homogeneous layer, and in traditionally manufactured PLOT columns, this results in variable coating thicknesses. The positions where the layer is thicker act as restrictions and affect flow (Figure 2). Depending on the number and intensity of these restrictions, traditional PLOT columns often show greater variation in flow restriction than wall coated open tubular (WCOT) columns. In practice, conventional PLOT columns with the same dimensions can differ in flow by a factor of 4 to 6 when operated at the same nominal pressure. For applications where flow is important, such as with Deans switching, the nonreproducible flow behavior of most commercially available PLOT columns is a problem.


In order to measure flow restriction reproducibility, Restek introduced a new factor: the flow restriction factor (F). This factor is based on the retention time of an unretained marker compound as measured on both coated and uncoated tubing using the same back pressure setting (Equation 1). For quality control purposes, methane is used as the marker when evaluating porous polymer columns, and helium is used for testing molecular sieve 5A columns.

Flow restriction factor determination can be used to assess both the degree of column restriction and the reproducibility of the column coating process. Figure 3 shows typical results for PLOT columns manufactured using a conventional process. Because of the difference in flow restriction, individual columns have very different flow characteristics. In contrast, Figure 4 shows results for columns made using our Rt-QS-BOND (bonded porous polymer) PLOT column process. Clearly, our manufacturing process results in greater consistency in both column coating thickness and flow restriction, which results in more stable retention times and better performance in Deans and related flow switching techniques. Flow restriction factors are specified on the certificate of analysis (CofA) included with every Restek PLOT column, and the values are listed on the report.

Figure 2: Inconsistent coating thicknesses result in restrictions that cause significant variation in flow.

Figure 3: Traditional PLOT columns show significant flow variability, indicating inconsistent column coating thicknesses.

Equation 1: Flow restriction factor (F) is used to demonstrate coating consistency.

 $F = \frac{\text{tr}_1 \text{ of unretained}}{\text{component}}$ $\frac{\text{(uncoated tubing)}}{\text{tr}_2 \text{ of unretained}}$ $\frac{\text{component}}{\text{(coated column)}}$

tr = retention time

Note: F values will always be <1 as the coated column always has more restriction than the uncoated column.

Figure 4: PLOT columns from Restek offer consistent flow restriction, giving more reproducible results column to column.

Restek's PLOT columns are exceptionally robust, featuring concentric stabilized coating layers. They allow for more consistent gas flows and are recommended for applications sensitive to variation in retention time or flow. These PLOT columns are a significant advance in technology and are ideal for efficient, reproducible analyses of permanent gases, solvents, and hydrocarbons.

PLOT Column Phase Cross-Reference: Similar Selectivity

Restek Rt and MXT Columns	Porous Layer	Supelco	Alltech	Agilent (J&W, Varian, Chrompack)	Quadrex
Alumina BOND/Na2SO4	Aluminum oxide	Alumina-Sulfate	AT-Alumina	GS-Alumina, CP-Al ₂ O ₃ /NA ₂ SO ₄	
Alumina BOND/KCl*	Aluminum oxide	Alumina-Chloride		GS-Alumina KCl, HP PLOT Al ₂ O ₃ , CP-Al ₂ O ₃ /KCl	
Alumina BOND/CFC*	Aluminum oxide			unique product	
Alumina BOND/MAPD	Aluminum oxide			Select Al ₂ O ₃ MAPD	
Msieve 5A	Molecular sieve 5A	Molsieve 5A	AT-Molesieve	HP PLOT Molesieve, CP-Molesieve 5A	PLT-5A
Q-BOND	100% Divinylbenzene	Supel-Q-PLOT	AT-Q	HP PLOT Q, CP-PoraPlot Q, PoraBond Q	
QS-BOND*	Intermediate polarity porous polymer			GS-Q	
S-BOND*	DVB vinylpyridine polymer			CP-PoraPlot S	
U-BOND*	DVB ethylene glycol-dimethylacrylate polymer			HP PLOT U, CP-PoraPlot U, CP-PoraBond U	

^{*}Available only with fused silica tubing.

did you know?

Restek draws our own fused silica tubing and applies our own proprietary stationary phases. By fully managing our production streams, we are able to ensure unparalleled reliability and stability.

Rt-Alumina BOND Columns

Restek Rt-Alumina BOND columns are highly selective for C1–C5 hydrocarbons and separate all saturated and unsaturated hydrocarbon isomers above ambient temperatures. The reactivity of the aluminum oxide stationary phase is minimized by deactivation with inorganic salts, such as KCl or Na₂SO₄, to improve column response for polar unsaturates, like dienes, and the column's sensitivity (or response) ensures linear and quantitative chromatographic analysis for these compounds. Strong bonding minimizes particle generation and release, which allows valve switching with minimal risk to the injection or detection systems. And because they are stable up to at least 200 °C, Rt-Alumina BOND columns can be regenerated to restore full efficiency and selectivity by conditioning at their maximum temperature if water is adsorbed. High capacity and loadability give you exceptionally symmetrical peaks, making these columns ideal for volatile hydrocarbon separations at percent levels, as well as impurity analyses at ppm concentrations. Restek Rt-Alumina BOND PLOT columns are manufactured on fused silica tubing; select phases are also available on metal MXT tubing.

To ensure reproducible retention times and predictable flow behavior column to column, each Rt-Alumina BOND column is extensively tested. A hydrocarbon test mix confirms proper phase retention and selectivity. To calculate k (retention or capacity factor), which is a measure of phase retention, 1,3-butadiene is used, while selectivity is measured using retention indices for propadiene and methyl acetylene. The resolution of *trans*-2-butene and 1-butene is also verified and, to measure efficiency, plates per meter are checked using 1,3-butadiene. We do not recommend recoiling PLOT columns as this may cause particles to dislodge from the side of the tubing.

Rt-Alumina BOND/Na2SO4 Columns (fused silica PLOT)

Na₂SO₄ deactivation

- Acetylene and propadiene elute after butanes.
- Best separation for butene isomers (impurities in butene streams).
- Methyl acetylene elutes after 1,3-butadiene.
- Cyclopropane (impurity in propylene) elutes well before propylene.
- Temperature range: -60 to 200 °C.

ID	df	Length	Temp. Limits	qty.	cat.#
0.25 mm	4 μm	30 m	-60 to 200 °C	ea.	19775
0.32 mm	5 μm	30 m	-60 to 200 °C	ea.	19757
U.32 MM	5 μm	50 m	-60 to 200 °C	ea.	19758
0.52	10 μm	30 m	-60 to 200 °C	ea.	19755
0.53 mm —	10 μm	50 m	-60 to 200 °C	ea.	19756

Traces of water in the carrier gas and samples will affect the retention and the selectivity of alumina. If exposed to water, the retention times will shorten. The column can be regenerated by conditioning for 15–30 minutes at 200 °C under normal carrier gas flow. Periodic conditioning ensures excellent run-to-run retention time reproducibility.

Unless noted, the maximum programmable temperature for an Rt-Alumina BOND column is 200 °C. Temperatures higher than the stated maximum temperature can cause irreversible changes to the porous layer adsorption properties.

similar phases

Alumina-Sulfate; AT-Alumina; CP-Al₂O₃/Na₂SO₄, GS-Alumina

Rt-Alumina BOND columns show unique retention characteristics for hydrocarbons.

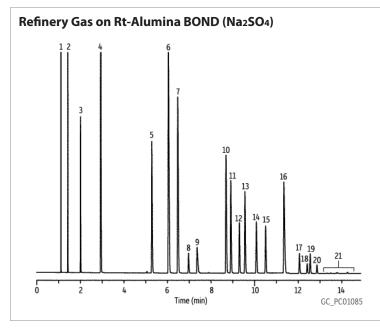
also available!

Metal MXT PLOT Columns

Isobutylene

13. cis-2-Butene

14. iso-Pentane


17. trans-2-Pentene

18. 2-Methyl-2-butene

15. *n*-Pentane 16. 1,3-Butadiene

19. 1-Pentene 20. *cis-*2-Pentene

21. Hexanes

Peaks

- Methane
 Ethane
- 3. Ethylene
- 4. Propane 5. Propylene
- 6. Isobutane 7. *n*-Butane
- Propadiene
 Acetylene
- 10. trans-2-Butene 11. 1-Butene

Column Rt-Alumina BOND/Na2SO4, 50 m, 0.53 mm ID, 10 µm (cat.# 19756)
Sample Refinery gas

 Injection

 Inj. Vol.:
 10 µL split

 Liner:
 Taper (2 mm) (cat.# 20795)

 Inj. Temp.:
 200 °C

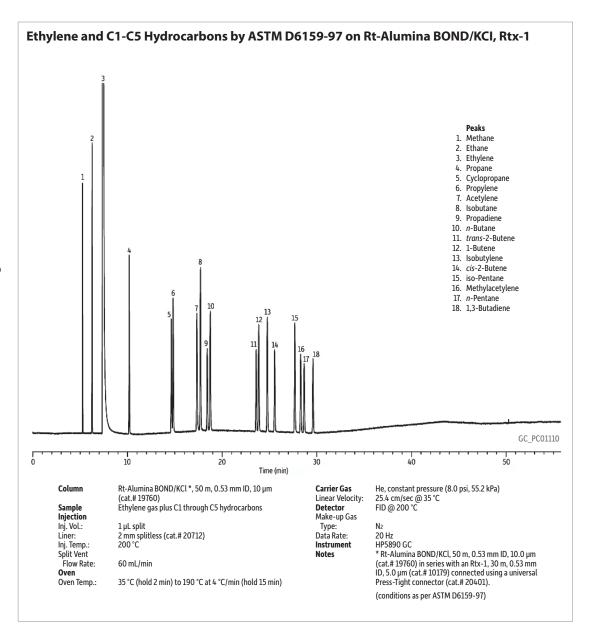
Inj. Temp.: 200 °C
Split Vent
Flow Rate: 80 mL/min

Oven Temp.: 45 °C (hold 1 min) to 200 °C at 10 °C/min (hold 3.5 min)

Carrier Gas H₂, constant pressure (8.0 psi, 55.2 kPa) Linear Velocity: 74 cm/sec @ 45 °C Detector FID @ 200 °C

Rt-Alumina BOND/KCl Columns (fused silica PLOT)

KCI deactivation


- Restek's lowest polarity alumina column.
- Low moisture sensitivity reduces the need for frequent regeneration.
- Acetylene elutes before *n*-butane.
- Methyl acetylene (impurity in 1,3-butadiene) elutes before 1,3-butadiene.
- Temperature range: -60 to 200 °C.

similar phases

Alumina-Chloride; CP-Al₂O₃/ KCl, GS-Alumina KCl, HP-PLOT Al₂O₃/KCl

Rt-Alumina BOND columns show unique retention characteristics for hydrocarbons.

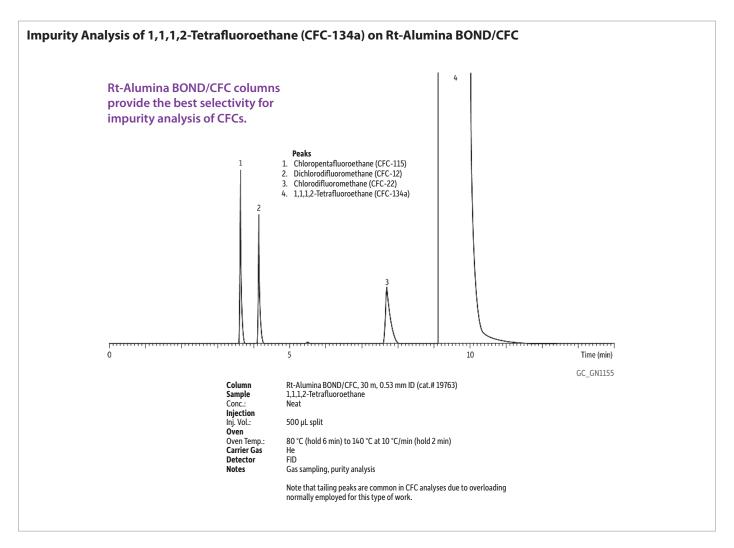
ID	df	Length	Temp. Limits	qty.	cat.#
0.25 mm	4 μm	30 m	-60 to 200 °C	ea.	19776
0.32 mm	5 μm	30 m	-60 to 200 °C	ea.	19761
U.32 MM	5 μm	50 m	-60 to 200 °C	ea.	19762
0.53 mm	10 μm	30 m	-60 to 200 °C	ea.	19759
	10 μm	50 m	-60 to 200 °C	ea.	19760

did you **know**?

All Restek PLOT columns come standard on a 7"-diameter, 11-pin cage. Metal MXT columns are also available coiled to 3.5" diameter for select phases by adding the suffix -273 to the part number. If you need more information, please call your local Restek representative.

Rt-Alumina BOND/CFC Columns (fused silica PLOT)

- Improved inertness for chlorofluorocarbon (CFC) compounds.
- Highly selective alumina-based column, separates most CFCs.
- High retention and capacity for CFCs.
- Temperature range: -60 to 200 °C.


The Alumina BOND/CFC adsorbent is ideal for retaining volatile halogenated compounds, especially CFCs (chlorinated fluorocarbons). It offers high selectivity, allowing a wide range of CFC isomers to be resolved at above ambient temperatures. The Rt-Alumina BOND/CFC column is thoroughly deactivated to reduce the reactivity of alumina. Even though there is still some residual reactivity for some mono- or di-substituted CFCs, the majority of these compounds can be accurately quantified from mainstream processes or in impurity analyses.

Especially when valve switching or backflushing is used, Restek recommends using particle traps to help prevent detector spikes and valve rotor scratches.
Visit www.restek.com/plot for specialized PLOT column particle traps.

ID	df	Length	Temp. Limits	qty.	cat.#
0.53 mm	10 μm	30 m	-60 to 200 °C	ea.	19763

For more chromatograms, search our extensive library at www.restek.com/chromatograms

Rt-Alumina BOND/MAPD Columns (fused silica PLOT)

- Optimized deactivation produces maximum response when analyzing trace levels of acetylene, methyl
 acetylene, and propadiene.
- Stable response factors make this column ideal for process-type applications where recalibration must be minimized.
- High loadability reduces peak tailing and improves separations.
- Extended temperature range up to 250 °C for fast elution of high molecular weight (HMW) hydrocarbons and accelerated column regeneration following exposure to water.
- Temperature range: -60 to 250 °C.

Rt-Alumina BOND/MAPD PLOT columns are made specifically for the analysis of petrochemicals and downstream products such as ethylene, propylene, butylenes, and butadiene.

Also available in metal MXT-Alumina columns!

Restek's R&D chemists have optimized the deactivation technology applied to our Rt-Alumina BOND/MAPD column for improved analysis of trace concentrations of polar hydrocarbons like acetylene, methyl acetylene, and propadiene in hydrocarbon streams containing higher levels of C1-C5 hydrocarbons. Our alumina PLOT deactivation produces an incredibly inert column that offers superior reproducibility and stable response factors to maximize the number of analyses before recalibration is required. Its high sample capacity reduces peak tailing, thereby improving the separation of target compounds. In addition, a 250 °C maximum operating temperature lets you more quickly elute hydrocarbons up to dodecane and reduces regeneration time when the column is exposed to water from samples or carrier gases.

also **available**! Metal MXT PLOT

See page 15 for more information.

Columns

similar phases Select Al₂O₃ MAPD

ID	df	Length	Temp. Limits	qty.	cat.#
0.25 mm	4 μm	30 m	-60 to 250 °C	ea.	19781
0.22	5 μm	30 m	-60 to 250 °C	ea.	19779
0.32 mm	5 μm	50 m	-60 to 250 °C	ea.	19780
0.53 mm	10 μm	50 m	-60 to 250 °C	ea.	19778

Molecular Sieve 5A PLOT Columns

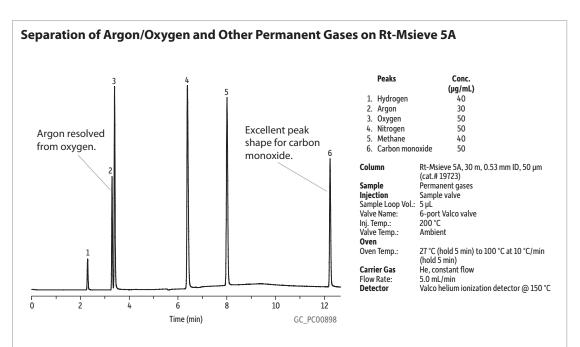
Restek's molecular sieve 5A PLOT columns are designed for efficient separation of argon/oxygen and other permanent gases, including carbon monoxide. Special coating and deactivation procedures ensure chromatographic efficiency and the integrity of the porous layer coating. Molecular sieves have very high retention, allowing separations of permanent gases at temperatures above ambient. Our deactivation technology also allows carbon monoxide to elute as a sharp peak. Additionally, our unique immobilization process guarantees that the uniform particles remain adhered to the tubing—even after continuous valve cycling.

Rt-Msieve 5A Columns (fused silica PLOT)

- Improve accuracy with sharp, symmetrical peaks for argon, oxygen, and carbon monoxide.
- Easily separate permanent gases at temperatures above ambient.
- Restek PLOT technology reduces particle release, improving flow reproducibility and reducing downtime for maintenance.
- Temperature range: -100 to 300 °C.

We do not recommend recoiling PLOT columns as this may cause particles to dislodge from the side of the tubing.

ID	df	Length	Temp. Limits	qty.	Similar to Part #	cat.#
0.25 mm	20 μm	15 m	-100 to 300 °C	ea.		19773
0.32	30 μm	15 m	-100 to 300 °C	ea.	Agilent 19091P-MS7; Scion/Bruker/Varian CP7535	19720
0.32 mm	30 μm	30 m	-100 to 300 °C	ea.	Agilent 19091P-MS8; Scion/Bruker/Varian CP7536	19722
0.52	50 μm	15 m	-100 to 300 °C	ea.	Agilent 19095P-MS9; Scion/Bruker/Varian CP7537	19721
0.53 mm	50 um	30 m	-100 to 300 °C	ea.	Agilent 19095P-MSO: Scion/Bruker/Varian CP7538	19723



Because molecular sieve materials are very hydrophilic, they will adsorb water from the sample or carrier gas. Water contamination can have a detrimental effect on peak symmetry and can reduce the resolution of all compounds. If water contamination occurs, reactivate your Rt-Msieve 5A PLOT column by conditioning at 300 °C with dry carrier gas flow for 3 hours.

similar phases

AT-Molsieve; CP-Molsieve 5A, HP PLOT Molesieve; Molsieve 5A; PLT-5A

Rt-Msieve 5A PLOT columns are designed for efficient separation of Ar/O₂ and other permanent gases, including CH₄, C₂H₆, and CO.

also **available**!

Metal MXT PLOT Columns

See page 14 for more information.

Porous Polymer Columns

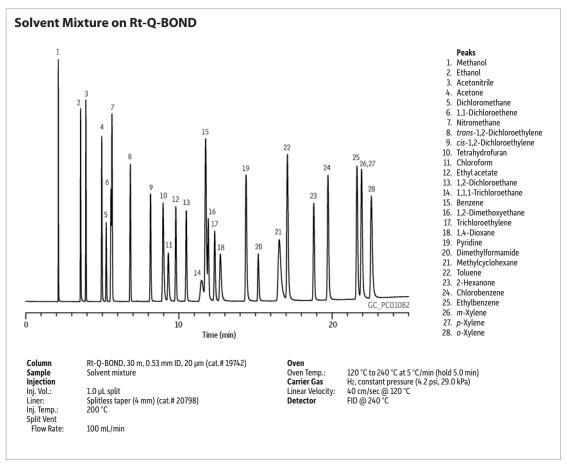
Our porous polymer PLOT columns are not moisture sensitive, making them ideal for applications where moisture is of major concern. Porous polymers are unique, highly retentive stationary phases with a wide application range that are able to elute both polar and nonpolar compounds. They are very hydrophobic, so water has no impact on retention times and even elutes as a good chromatographic peak. The Q-BOND is our most nonpolar and widely used porous polymer column; functional groups can be added to increase polarity (i.e., QS-, S-, and U-BOND). The process used to manufacture porous polymer PLOT columns causes the particles to adhere strongly to the walls of the tubing, so there is virtually no particle generation. You get reproducible performance from column to column, including selectivity and flow.

similar phases

AT-Q; CP-PoraBOND Q, CP-PoraPLOT Q, HP PLOT Q; Supel-Q-PLOT

Our porous polymer PLOT columns are not moisture sensitive, making them ideal for applications where moisture is of major concern.

Rt-Q-BOND Columns (fused silica PLOT)

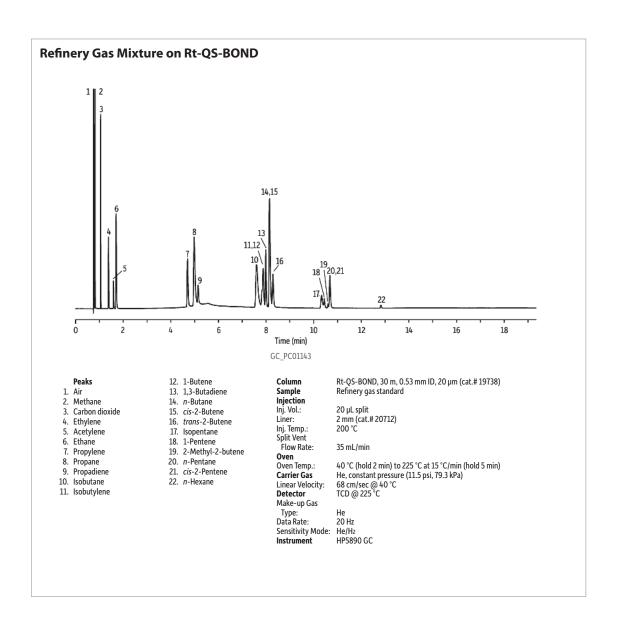

100% divinylbenzene

- Nonpolar PLOT column incorporating 100% divinylbenzene.
- Excellent for analysis of C1 to C3 hydrocarbons as well as isomers and alkanes up to C10.
- High retention for CO₂ simplifies gas analysis; CO₂ and methane separated from O₂/N₂/CO. (Note: O₂/N₂/CO not separated at ambient temperature.)
- Use for analysis of oxygenated compounds and solvents.
- Maximum temperature of 300 °C.

also available! Metal MXT PLOT Columns

ID	df	Length	Temp. Limits	qty.	cat.#
	8 µm	15 m	-60 to 280/300 °C	ea.	19764
0.25 mm	8 μm	30 m	-60 to 280/300 °C	ea.	19765
0.32 mm	10 μm	15 m	-60 to 280/300 °C	ea.	19743
U.32 MM	10 μm	30 m	-60 to 280/300 °C	ea.	19744
0.53 mm	20 μm	15 m	-60 to 280/300 °C	ea.	19741
	20 μm	30 m	-60 to 280/300 °C	ea.	19742

Rt-QS-BOND Columns (fused silica PLOT)


porous divinylbenzene homopolymer

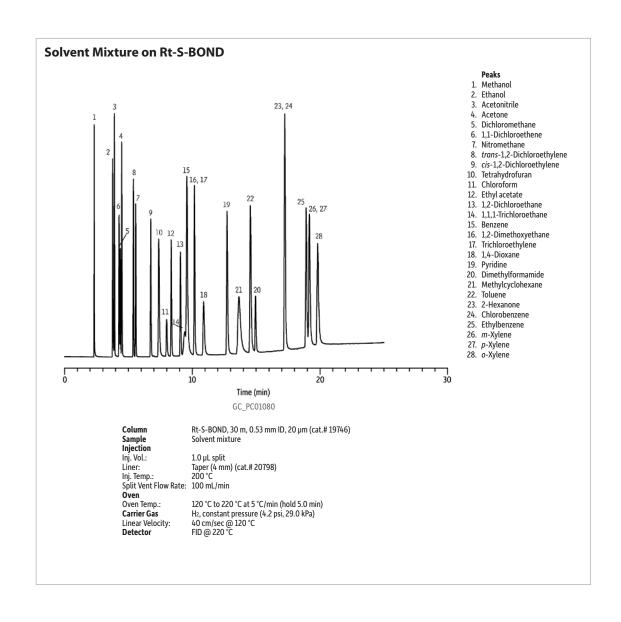
- Intermediate polarity porous polymer PLOT column incorporating low 4-vinylpyridine.
- Separates ethane, ethylene, and acetylene to baseline.
- Temperature range: -60 to 250 °C.

ID	df	Length	Temp. Limits	qty.	cat.#
0.25 mm	8 µm	15 m	-60 to 250 °C	ea.	19767
U.25 MM	8 µm	30 m	-60 to 250 °C	ea.	19768
0.22	10 μm	15 m	-60 to 250 °C	ea.	19739
0.32 mm	10 μm	30 m	-60 to 250 °C	ea.	19740
0.53 mm	20 μm	15 m	-60 to 250 °C	ea.	19737
	20 μm	30 m	-60 to 250 °C	ea.	19738

similar phases GS-Q

Our porous polymer PLOT columns are not moisture sensitive, making them ideal for applications in which moisture is of major concern.

Rt-S-BOND Columns (fused silica PLOT)


porous divinylbenzene homopolymer

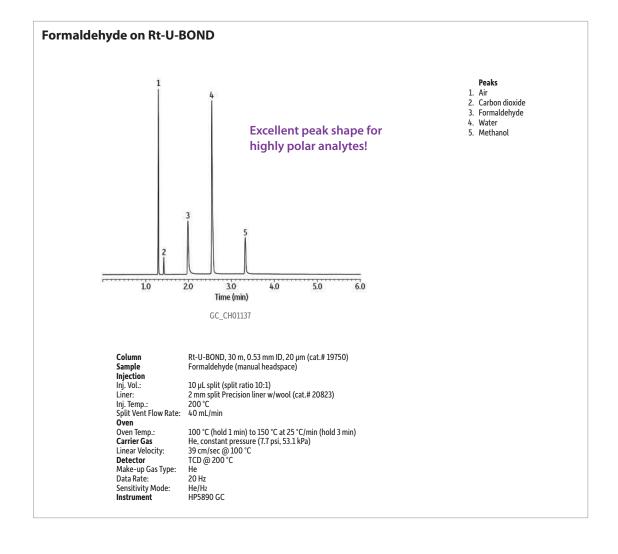
- Midpolarity porous polymer PLOT column, incorporating high 4-vinylpyridine.
- Use for the analysis of nonpolar and polar compounds.
- Temperature range: -60 to 250 °C.

similar phases CP-PoraPLOT S

Our porous polymer PLOT columns are not moisture sensitive, making them ideal for applications in which moisture is of major concern.

ID	df	Length	Temp. Limits	qty.	cat.#
0.25	8 µm	15 m	-60 to 250 °C	ea.	19769
0.25 mm -	8 µm	30 m	-60 to 250 °C	ea.	19770
0.32 mm	10 μm	30 m	-60 to 250 °C	ea.	19748
0.53 mm	20 μm	15 m	-60 to 250 °C	ea.	19745
	20 μm	30 m	-60 to 250 °C	ea.	19746

Rt-U-BOND Columns (fused silica PLOT)


divinylbenzene ethylene glycol/dimethylacrylate

- Restek's highest polarity porous polymer column.
- Polar PLOT column, incorporating divinylbenzene ethylene glycol/dimethylacrylate.
- Highly inert for the analysis of polar and nonpolar compounds.
- Common applications include trace H2S, COS, and mercaptans in hydrocarbon streams.
- Temperature range: -60 to 190 °C.

ID	df	Length	Temp. Limits	qty.	cat.#
0.25 mm	8 µm	15 m	-60 to 190 °C	ea.	19771
U.25 MM	8 µm	30 m	-60 to 190 °C	ea.	19772
0.22	10 μm	15 m	-60 to 190 °C	ea.	19751
0.32 mm	10 μm	30 m	-60 to 190 °C	ea.	19752
0.53 mm	20 μm	15 m	-60 to 190 °C	ea.	19749
	20 μm	30 m	-60 to 190 °C	ea.	19750

similar phases CP-PoraBOND U, CP-Pora-PLOT U, HP-PLOT U

Our porous polymer PLOT columns are not moisture sensitive, making them ideal for applications in which moisture is of major concern.

MXT-Alumina Columns

Molecular Sieve 5A PLOT Columns

7" diameter, 11-pin cage

Restek's molecular sieve 5A PLOT columns are designed for efficient separation of argon/oxygen and other permanent gases, including carbon monoxide. Special coating and deactivation procedures ensure chromatographic efficiency and the integrity of the porous layer coating. Molecular sieves have very high retention, allowing separations of permanent gases at temperatures above ambient. Our deactivation technology also allows carbon monoxide to elute as a sharp peak. Additionally, our unique immobilization process guarantees that the uniform particles remain adhered to the tubing—even after continuous valve cycling.

Because molecular sieve materials are very hydrophilic, they will adsorb water from the sample or carrier gas. Water contamination can have a detrimental effect on peak symmetry and can reduce the resolution of all compounds. If water contamination occurs, reactivate your Restek Msieve 5A PLOT column by conditioning at 300 °C with dry carrier gas flow for 3 hours.

MXT-Msieve 5A Columns (Siltek-treated stainless-steel PLOT)

Advantages of metal MXT PLOT columns include:

- Can be made in small coil diameters—perfect for tight spaces.
- Rugged material withstands rough handling and shock.
- Designed for robust performance in process GCs and field instruments.
- Available in 3.5"-coil diameter or 7"-diameter, 11-pin cage.*

*We do not recommend recoiling PLOT columns as this may cause particles to dislodge from the side of the tubing.

ID	df	Length	Temp. Limits	Column Config	qty.	cat.#
0.53 mm	50 μm	30 m	-100 to 300 °C	7" 11-pin cage	ea.	79723
	50 μm	30 m	-100 to 300 °C	3.5" Coil	ea.	79723-273

MXT-Alumina BOND/Na2SO4 Columns (Siltek-treated stainless-steel PLOT)

Advantages of metal MXT PLOT columns include:

- Can be made in small coil diameters—perfect for tight spaces.
- Rugged material withstands rough handling and shock.
- Designed for robust performance in process GCs and field instruments.
- Available in 3.5"-coil diameter or 7"-diameter, 11-pin cage.*

*We do not recommend recoiling PLOT columns as this may cause particles to dislodge from the side of the tubing.

ID	df	Length	Temp. Limits	Column Config	qty.	cat.#
0.53 mm	10 μm	30 m	-60 to 200 °C	7" 11-pin cage	ea.	79714
	10 μm	30 m	-60 to 200 °C	3.5" Coil	ea.	79714-273

MXT-Alumina BOND/MAPD Columns (Siltek-treated stainless-steel PLOT)

- Optimized deactivation produces maximum response when analyzing trace levels of acetylene, methyl
 acetylene, and propadiene.
- Stable response factors make this column ideal for process-type applications where recalibration must be minimized.
- High loadability reduces peak tailing and improves separations.
- Extended temperature range up to 250 °C for fast elution of high molecular weight (HMW) hydrocarbons and accelerated column regeneration following exposure to water.
- Temperature range: -60 to 250 °C.

MXT-Alumina BOND/MAPD PLOT columns are made specifically for the analysis of petrochemicals and downstream products, such as ethylene, propylene, butylenes, and butadiene!

Also available in fused silica Rt-Alumina columns!

Restek's R&D chemists have optimized the deactivation technology applied to our MXT-Alumina BOND/ MAPD column for improved analysis of trace concentrations of polar hydrocarbons like acetylene, methyl acetylene, and propadiene in hydrocarbon streams containing higher levels of C1-C5 hydrocarbons. Our new Alumina PLOT deactivation produces an incredibly inert column that offers superior reproducibility and stable response factors to maximize the number of analyses before recalibration is required. Its high sample capacity reduces peak tailing, thereby improving the separation of target compounds. In addition, a 250 °C maximum operating temperature lets you more quickly elute hydrocarbons up to dodecane and reduces regeneration time when the column is exposed to water from samples or carrier gases. We do not recommend recoiling PLOT columns as this may cause particles to dislodge from the side of the tubing.

ID	df	Length	Temp. Limits	Column Config	qty.	cat.#
0.53 mm	10 μm	30 m	-60 to 250 °C	7" 11-pin cage	ea.	79728
	10 µm	30 m	-60 to 250 °C	3.5" Coil	ea.	79728-273

7" diameter, 11-pin cage

MXT-Q-BOND Columns (Siltek-treated stainless-steel PLOT)

Advantages of metal MXT PLOT columns include:

- Can be made in small coil diameters—perfect for tight spaces.
- Rugged material withstands rough handling and shock.
- Designed for robust performance in process GCs and field instruments.
- Available in 3.5"-coil diameter or 7"-diameter, 11-pin cage.*

*We do not recommend recoiling PLOT columns as this may cause particles to dislodge from the side of the tubing.

ID	df	Length	Temp. Limits	Column Config	qty.	cat.#
0.25 mm	8 µm	15 m	-60 to 300 °C	7" 11-pin cage	ea.	79718
	8 µm	15 m	-60 to 300 °C	3.5" Coil	ea.	79718-273
0.53 mm	20 μm	30 m	-60 to 280/300 °C	7" 11-pin cage	ea.	79716
	20 μm	30 m	-60 to 280/300 °C	3.5" Coil	ea.	79716-273

MXT Low-Dead-Volume Connector Kits for Metal Columns

- Connect a guard column/transfer line to an MXT stainless-steel column.
- Low thermal mass tracks rapid oven temperature programming.
- Stainless-steel ferrules and nuts.
- Available in "Y" and union configurations.
- Siltek treatment ensures ultimate inertness.

Each kit contains the MXT union, two 1/32-inch ferrules and nuts.

Description	Includes	Fits Column ID	Union Bore	qty.	cat.#
	MXT union, 1/32-inch ferrules (2) and nuts (2)	For 0.28 mm ID MXT Columns	0.25 mm	kit	20397
MXT Low-Dead-Volume Connector Kit	MXT union, 1/32-inch ferrules (2) and nuts (2)	For 0.18/0.25/0.32 mm ID MXT Columns	0.25 mm	kit	20536
	MXT union, 1/32-inch ferrules (2) and nuts (2)	For 0.53 mm ID MXT Columns	0.25 mm	kit	20394

PLOT Column Particle Trap

- Includes two Press-Tight connectors, a 2.5 m column, and high-temperature string.
- Protects detector and valves; connects between column and detector or valve.
- Eliminates detector spikes and scratches in valve rotors.

The technology used to adhere particles in PLOT columns is excellent; however, it is still possible for particles to dislodge when extreme pressure shocks and gas flow changes occur. This sometimes happens when valve switching or backflushing is used. In those cases, using particle traps is recommended.

Description	Includes	Size	qty.	cat.#
	Press-Tight connectors (2); 2.5 m, 0.25 mm ID column; high-temperature string	0.25 mm ID	ea.	19774
PLOT Column Particle Trap	Press-Tight connectors (2); 2.5 m, 0.32 mm ID column; high-temperature string	0.32 mm ID	ea.	19753
	Press-Tight connectors (2); 2.5 m, 0.53 mm ID column; high-temperature string	0.53 mm ID	ea.	19754

Learn more at www.restek.com/petro

Questions? Contact us or your local Restek representative (www.restek.com/contact-us).

Restek patents and trademarks are the property of Restek Corporation. (See www.restek.com/Patents-Trademarks for full list.) Other trademarks in Restek literature or on its website are the property of their respective owners. Restek registered trademarks are registered in the U.S. and may also be registered in other countries. To unsubscribe from future Restek communications or to update your preferences, visit www.restek.com/subscribe To update your status with an authorized Restek distributor or instrument channel partner, please contact them directly.

© 2024 Restek Corporation. All rights reserved. Printed in the U.S.A.

