

Blood Alcohol and Inhalants of Abuse Analysis Using Gas Chromatography Optimized with Computer Software.

Ramkumar Dhandapani, Corby Hilliard, Jamie York, Jared Burkhart. Restek Corporation, 110 Benner Circle, Bellefonte, PA 16823

Introduction

Screening for volatile inhalants of abuse, as well as analyzing blood alcohol content, is commonly performed in Occenning for votation invasants of abusis, as well as analyzing blood altabolic content, its commonly performed in formed toxicology blood particles using headquest performeding performed in Themse instancion extends for the first of the performance of the pe

These issues can be solved by using computer modeling software to predict retention times of compounds of interest on various stationary phases. In addition to the ability of the web-based software to help select a column and provide an optimized separation of compounds of interest on a specific stationary phase, the software can also be used to make changes to an alytical conditions and observe the effect on elution, making it a valuable tool for method development and optimization.

Figure 1: Comparison of instrument confirmation run retention times with computer predicted retention times for Rtx-RAC1 and Rtv. RAC2. There is excellent agreement with all producted retention times being a 0.5% different than actual

Rtx-BAC1	Instrument Model					Model	
	Confirmation		N.	Rtx-BAC2	Confirmation	Prediction	%
omgound	Run RT	RT.	Difference	Compound	Run RT	RT	Differe
,1,1-trifluoroethane	1.190	1.16	0.086%	1,1,1-trifluoroethane	1.122	1.124	
,1,1,2-tetrafluoroethane	1.191	1.193	0.568%	Ω	1148	1150	0.0
				dichlorodifluoromethane			
lfluorochloromethane	1.23	1231		1,1,1,2-tetrafluoroethane	1.164		
,1-difluoroethane	1.236	1236	0.000%	1,2-dichloro-1,1,2,2-tetrafluoro ethane	1.199		
ichlorodifluoromethase				1,1-difluoroethane			
io-butane	1.351			co-butane	12	1.2	
2-dichloro-1,12,2-tetrafluoro ethane	1.391	1.391	0.000%	difluorochioromethane	1.227	1.226	0.0
nethanol 4	1.437	1.437	0.070%	C4	1.25		0.0
	1,595	1.595	0.00099	cs	1.498	1.497	
cetaldehyde lucrodichloromethane	1.721	1.721		trichloromonofluoromethane			
tuoroactriorometrane thyl chloride	1.721			acetaldehyde ethyl chloride	1,606	1,606	- 0
thyr chloride thanol	1.786	1788	0.000%	1,1,2-trichioro-1,2,2-trifluoro ethane	1716	1.722	
richioromorofluoromethane	1.907	1.907	0.052%	diethylether	1262		
nchoromoronucronettane	1.956	1.958	0.002%	fluorodichioromethane	1.92	1 929	
lethyl ether	2.11	2.11	0.000%	1,1-dichiproethene	1917	1 919	0.
	2.133		0.541%	methanol	1,907	1,908	0.0
apropanol ,1-dichloroethene	2.144	2.244	0.1269	C6	2.034	2.032	0.0
nethylene chipride	2.325			MTRE	2 2 2 2 2		-
.1.2-trichloro-1.2.2-triffuoro ethane	2.825	2.425	0.129%	ethanol	2.422		
,1,2 trichioro-1,2,2 trimuoro ethane ert-butanol	2.463	2.474	0.122%	transi 1Erbinmethene	2.424	2.429	-2
en-outanoi cirtone	2.521	2.521	0.122%	acetone	2.540	2.478	0
oronitrile	2.523	2523	0.0009	sobutel nitrite	2.587	2.544	
rans-1.2-dichloroethere	2.633	2.637	0.152%	methylene chloride	2.61		
-grapanal	2.689	2.692	0.112%	1.1-dichiproethase	2.969		
rgropanor ATRE	2.836	2.838		sopropanol	2.321	2.972	
i i	2.931	2.921	0.002%	tert-butarol	2.872	2.829	
le ,1-dichloroethane	2.923	2342	0.0229	(2	3.021		
Noodom.	3.226	3,226		n-butyl nitrite	3.12	3 122	0.
splutyl nitribe	3 2 2 2 2	2 2 2 2 2	0.092%	acetonitrile	3.27	3.272	
sobutyl nicroe sobutyl alcohol	3.574	3 574	0.252%		3262	3,265	0
	3.570	2.744		carbon tetrachioride			
nethyl ethyl ketone	2.789	2,769		1,1,1-orichiorpethane ethyl acetate	2.386	3.400	- 8
thyl acetate arbon tetrachloride	2.846	2,846		n-propanol	3.631	2,628	
				n-propance methyl ethyl ketone	3.761	2.762	
,1,1-trichloroethane	2.853	2,852		metryi etryi ketose chioroform	2.766	2.750	
-butyl nitrite 2-dichloroethane	3,921 3,92	2,921	0.157%	Bergene	2,756		
					2 9 6 6		
eszese	4.023	4.023	0.124%	scamyl nitrite trichlorpethene	4.228		
-butanol 7	4.107	4,107	0.097%	L2-dichlorpethane	4.428		
romodichioromethane	4.460		0.157%				
	4.493	4.472	0.1299	CR	4386		
richloroethene	4.796	4,802	0.178%	sobutyl alcohol s. 2-dichloropropane	4.54	4.549	- 0
,2-dichloropropane	4.795	4.902	0.5469		5.072	5.043	
scarryl nitrite				2-pentanone n-butul alcohol	\$1077 \$166		
gentanone	5.246	\$254		n-outyl access bromodichloromethane	5.384	5.376	
chloroethyl vinyl ether	5.266	5.273	0.171%		5.32 5.464		
samyl alcohol	5,309			toluene	\$464	S.467	
1 2 trichiomethone	5.7% 5.936	5.783 5.851	0.121%	tetrachioroethese	5.629 5.629		
				2-chloroethyl vinyl ether	5.629 5.617	5.633	- 01
lbromochioromethane	5.885 5.993	5.896	0.187%	methyl isobutyl ketone			
8	5.993	6.003	0.150%	C9	5.929	5.932	
nethyl isobutyl ketone etrychloroethene				soamyl alcohol	6.268	6.278	
	6.339	635	0.172%	1,1,2-sichiorsethane	6743		
nitropropane				2-hexanone	6.754 6.977	6,759	- 0
hearone	6.996	7.011	0.186%	ethylberoene dibromochloromethane	7.013	7,019	
Norobenzene	7.23	7.235	0.208%		7.013		
remoferm	7.366			2-nitroprogane	7.13		
thyberzene	7.349	7.362	0.177%	m-sylene			
n-wylene	7.517	7,533	0.213%	p-sylene	7.109	7.106	
splene	7.517	7.533	0.2129	chlorobercene			
				C10	7.482		
sylene	7.973	7.988	0.201%	o-sylene	7.653	7.66	- 01
,1,2,2-tetrachioroethane	8.14	8.155	0.184%	bromeform 1.1.2 Austrachingusthana	8.717	8.722 6.566	- 01
10	9.263	9.277	0.562%		9.589	9.596	
,2-dichlorobenzene	9.879	9.89	0.152%	1,3-dichioroberzene			
,4-dichlorobenzene	9.937	9.956		1,4-dichloroberzene	9.995	20	- 01
,2-dichlorobenzene	10.429	20.445	0.163%	1,2-dichioroberzene	10.589	10.595	- 0:
12	12.172	12.187	0.123%	C12	10.379		- 01
14	14.719			C14	12.941	12.941	- 0:
15	15.881	15.892	0.069%	C15	14.111	14.111	- 0.0
	16.977			C16	15.218	15.216	0.
		19.05	0.026%	C18	17.26	17.254	- 01

Objectives

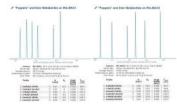
- > Develop retention time models for inhalants of abuse and blood alcohol analytes of rest on four unique GC stationary phases, using web-based modeling software.
- > Verify amurany of the models against artical analyses
- Demonstrate the utility of the modeling software for optimizing separations, speeding up methods, and translating to other carrier gases and column dimensions.

Figure 2: The ProEZGC Chromatogram modeler can be accessed at www.restek.com/croeper, Modeling can be done by entering in compounds of interest or searching by stationary phase and selecting

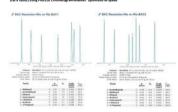
PAC Blocker Available

Figure 3: By default, the modeler will develop a speed optimized separation on the column you select. Conditions will be presented so that the analyst can replicate the chromatogram. In addition, resolution for each compound is calculated. Below are some examples of various compound classes resolution for wace compounds calculated. Selow are some examples or various compound that are modeled on the Rts-BAC1 and Rts-BAC2. a) Select solvents; b) "Poppers" and their metabolities"; c) BAC resolution compounds with internal standards.

a) Select Solvents modeled on Rtx-BAC1 (cat.# 18003) and Rtx-BAC2 (cat.# 18002) using


Methods

To build a database for computer modeling of chromatographic separations, the following fused silica capillary columns were installed into an Agilent 7890A GC with a 5975C MSD: Rt BAC1, Rts-BACPlus 1 and the Rts-BACPlus 2.


More than 70 volatile inhalants of abuse, including solvents, refrigerants, nitrites (aka "poppers") and their metabolites were analyzed on each column using three different temperature programmed run conditions. Two of the analysis were used to create a retention model based on thermodynamic indices of analytes and the third analysis was used to verify accuracy against the theoretical model (Figure 1).

Once the models were finalized, Pro EZGC, a web-based modeler, was used to optimize separations on each column, decrease analysis times, translate to different column dimensions separations on each column, each easily a make, cransition to direct encolumn dimension or carrier gases, and make user inputted adjustments to parameters such as carrier gas flow rate and oven ramp rates. (Figure 2, 3, 4).

b) "Poppers" and their metabolites modeled on Rtx-BAC1 (cat.# 18003) and Rtx-BAC2 (cat.# 18002) using ProEZGC Chromatogram Modeler. Optimized for speed.

c) BAC Resolution Compounds and Internal Standards Rtx-BAC1 (cat.#18003) and Rtx-BAC2 (cat.#18002) using ProE2GC Chromatogram Modeler. Optimized for speed.

Results

- Confirmation runs were in excellent agreement with the theoretical modeled analysis, demonstrating acceptable accuracy of the retention time models (Figure 1). All compositioned less than a 0.5% difference for actual vs modeled retention times.
- > Selection of various common ands of interest in the software successfully generated
- Selection of various compounds of interest in the sortware successfully generated optimized separations on each column, allowing the user to choose the column or column set that best fits their needs (Figure 2 and Figure 3).
- b. Concorded domonstration of mothod autimisation using the web hazadanadelesis Successful demonstration of method optimization using the web-based modelers provided, including speeding up analyses, translating to a different carrier gas, and user manipulation of parameters (Figure 4).

Discussion and Conclusions

Commuter modeling of commound retention times in gas chromatography is a valuable tool to aid in column stationary phase selection and method development/optimization. Use of the software greatly reduces the time required for manual method development, as users can software greatly reduces the time required for manual method development, as users can import changes to the method and seed here resides characterises. We hill began to characterise the final column set, users can select or input compounds of interest and then accidated and non position on each column, allowing the user to select the most appropriate column for their analysis. Elemène is and inequalities, and compounds can be added in the future of their source formats. The software region of the final their columns of their source formats. The software present by the modeller will work on any GC modeling results are produced on Existinc columns.

Additional Data

- > Libraries of the same compounds are available on the Rtx-BAC Plus 1 and Rtx-BAC Plus 2 columns. This gives users additional nations for selecting the best column for their
- > Libraries are live on Restek's website for the Rtx-BAC1. Rtx-BAC2. Rtx-BAC Plus 1 and Rtx-RAC Plus 2 columns > If there is substantial user demand for additional compounds, these can be added to the
- > Collection of drugs of abuse including derivatived forms may be collected on other appropriate columns, to further aid and support the forensic toxicology com

Figure 4: Methods can be customized using the software. In this example the "Poppers" method in Figure 3b was altered to use Hydrogen as a carrier gas on a wider bore, 30 m x 0.53 mm x 3.0 µm df Rt. &ACL (cat.4 20001), column. Column flowwas manually increased to 6 mt/m to table advantage of the efficiency of hydrogen as a carrier gas. Any of the fields can be altered and users can view the resultant chromatogen to see what the separation looks like. Changes made to the original method (Figure 3b) are circled in red.

E 3

SHAPE OF STREET

Control of the State of the Sta VARY CORNER DESCRIPTION OF SE

www.restek.com